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-CHAPTER TWO- 
 

 

GENERAL DIFFERENTIAL EQUATION FOR HEAT 

CONDUCTION 

 

 

 

 

1.1   General differential equation for heat conduction in Cartesian coordinates. 

 

1.2   General differential equation for heat conduction in cylindrical coordinates. 

 

1.3   General differential equation for heat conduction in spherical coordinates. 
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GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION 

 

1.1 General differential equation for heat conduction in Cartesian coordinates 

This is also known as heat diffusion equation or, simply heat equation. Consider a 

homogeneous body within which there is no bulk motion and heat transfer occurs in this body 

by conduction. Temperature distribution within the body at any given instant is given by: T(x, 

y, z,  ). The coordinate system used in this derivation is given in Fig. (1) 

Consider a differential volume element dx.dy.dz from within the body as shown. It has six 

surfaces Further, the body is assumed to be rigid, i.e. negligible work is done on the body by 

external mechanical forces. 

Let us make an energy balance on this differential element. Let us list out the various energy 

terms involved: first, there is energy conducted into the element; second, there is energy 

conducted out of the element; third, for generality, let there be energy generated within the 

element, say, due to chemical reaction or nuclear fission, etc. Net heat conducted into the 

element in conjunction with the heat generated within the element, will obviously cause an 

increase in the energy content (or the internal energy) of the element.  

 

 

Figure (1) 

We can write it mathematically as 

                       

where,  

   = energy entering the control volume per unit time. 

     = energy leaving the control volume per unit time. 

     = energy generated within the control volume per unit time 

    = energy storage within the control volume per unit time. 
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To calculate    . Energy enters the differential control volume from all the three sides by 

conduction only, since the control volume is embedded within the body considered. 

Let the energy entering the control volume in the X-direction through face ABCD be   . 

Similarly,    and    enter the control volume from the faces ABFE and DAEH as shown in 

the Fig. (1). 

    =                     

To calculate     . Energy entering the control volume in the X-direction at face ABCD leaves 

the control volume at the opposite face EFGH. This is designated as      Similarly,       

and       leave the control volume from the surfaces opposite to the ones at which they 

entered. Therefore, we write, 

                              

Now, from calculus, we know that       etc. can be expressed by a Taylor series expansion, 

where, neglecting the higher order terms, we can write, 

         
   

  
              

         
   

  
              

         
   

  
              

To calculate     . Let there be uniform heat generation within the volume at a rate of    

(W/m3). Heat generation is a volume phenomenon, i.e. heat is generated throughout the bulk of 

the body so, note its units (W/m
3
 ). As mentioned earlier, heat may be generated within the 

body due to passage of an electric current, a chemical reaction, nuclear fission, etc. Then, for 

the differential control volume         , we can write, 

                      

 

to calculate Est. As a result of the net energy flow into the control volume from all the three 

directions and the heat generated within the control volume itself, internal energy of the control 

volume increases. This will manifest itself as an increase in the temperature of the control 

volume. Let the temperature of the control volume increase by    in time   . Then, if   is the 

density and   , the specific heat of the material of the control volume, rate of increase of 

internal energy of control volume is given by: 

                 

  

  
       

Now, substituting for all terms in Eq. 1, we get, 
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Now let us bring in Fourier's law of heat conduction. 

       

  

  
       

  

  
       

       

  

  
       

  

  
       

       

  

  
       

  

  
       

Substituting Eq.(8), in Eq.(7), and dividing by         , we obtain, 
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This is the general form of heat diffusion equation in Cartesian coordinates for time dependent 

(i.e. unsteady state) heat conduction, with uniform heat generation within the body. This is a 

very important basic equation for conduction analysis. It has to be solved with appropriate 

initial and boundary conditions to get the temperature distribution within the body as a function 

of spatial and time coordinates. Of course, the heat transfer rate is calculated applying the 

Fourier's law, once the temperature distribution is known. 
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  Where,                 ⁄  is thermal diffusivity. 

Solution of general form of heat diffusion equation as given in Eq.9 is rather complicated. 

However, in many practical applications, we make simplifying assumptions and the resulting 

equations are easily solved. For example: 

 

1)  Steady state: This means that the temperature at any position does not change with 

time, i.e. 
  

  
    

Eq.9, becomes: 

(
   

   
 

   

   
 

   

   
)  

  

 
   

 

This is known as Poisson equation and is for steady state, three-dimensional heat 

conduction with heat generation, with constant thermal conductivity, in Cartesian 

coordinates. 

2) With no Internal heat generation: This means that qg term is zero. So, Eq. 9  

becomes, 
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(
   

   
 

   

   
 

   

   
)  

 

 

  

  
 

 

This is known as Diffusion equation, and it represents time dependent, 

three-dimensional heat conduction, with no internal heat generation, and with constant 

thermal conductivity, in Cartesian coordinates. 

3) Steady state, with no Internal heat generation: This means that qg and 
  

  
 are zero. 

So, Eq. 9 becomes. 

 

(
   

   
 

   

   
 

   

   
)    

 

This is known as Laplace equation, and it represents steady state, three-dimensional 

heat conduction with no internal heat generation, with constant thermal conductivity, in 

Cartesian coordinates. 

4) One-dimensional, steady state, with no internal heat generation: This means that. 

(
   

   
 

   

   
  )    (    )    (

  

  
  ) 

So Eq. 9 becomes, 

   

   
 

 

1.2 General differential equation for heat conduction in cylindrical coordinates 

Eq. 9 derived earlier is suitable to analyse heat transfer in regular bodies of rectangular, square 

or parallelepiped shapes. But, if we have to analyse heat transfer in cylindrical-shaped bodies 

(which are commonly used in practice), then, working with cylindrical coordinates is more 

convenient, since in that case, the coordinate axes match with the system boundaries. 

Nomenclature for cylindrical coordinate system is shown in Fig. 2. 

Figure2 
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Differential equation for heat conduction in cylindrical coordinates may be derived by 

considering an elemental cylindrical control volume of thickness dr and making an energy 

balance over this control volume, as was done in the case of Cartesian coordinates, or, 

coordinates transformation can be adopted; for this purpose, transformation equations are, 

         

         

    

       (  ⁄ ) 

The resulting general differential equation in cylindrical coordinates is, 
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Eq. 10 is the general differential equation in cylindrical coordinates, for time dependent, 

three-dimensional conduction, with constant thermal conductivity and with internal heat 

generation.  

For one-dimensional conduction in r direction only, we get from Eq. 10, 
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And for steady state we get: 

 

 
(
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1.3 General differential equation for heat conduction in spherical coordinates 

To analyse heat transfer in spherical systems, working with spherical coordinates is more 

convenient, since the coordinate axes match with system boundaries. Nomenclature for the 

spherical coordinates is shown in Fig. 3. 

Figure (3) 
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Differential equation for heat conduction in spherical coordinates may be derived by 

considering an elemental spherical control volume and making an energy balance over this  

control volume, as was done in the case of Cartesian and cylindrical coordinates, or, coordinate 

transformation can be adopted using the following transformation equations, 

              

              

         

The resulting general differential equation in spherical coordinates is, 
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Eq. 13 is the general differential equation in spherical coordinates, for time dependent, 

three-dimensional conduction, with constant thermal conductivity and with internal heat 

generation. 

For one-dimensional conduction in r direction only, we get from Eq. 13, 
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Eq. 14 represents one-dimensional, time dependent conduction in r direction only, with 

constant k and uniform internal heat generation, in spherical coordinates. 

And, for steady state, one-dimensional heat conduction in r direction only, with constant k 

and uniform heat generation Eq. 14 reduces to, 
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-CHAPTER THREE- 

 

ONE DIMENSIONAL STEADY STATE HEAT CONDUCTION 
 

 

 

2.1 One-Dimensional Heat Conduction, No Heat Generation for Plane Slab 

2.2 One-Dimensional Heat Conduction, No Heat Generation for Cylindrical Systems 

2.3 One-Dimensional Heat Conduction, No Heat Generation for Spherical Systems 

2.4 Heat Flow Through Composite Slabs 

2.4.1 Thermal resistances in series 

2.4.2 Thermal resistances in parallel 

2.4.3 Thermal resistance for cylindrical shell 

2.4.4 Thermal resistance for spherical system 

2.5.1 Overall Heat Transfer Coefficient 

2.5.2 Overall Heat Transfer Coefficient for the Cylindrical System 

2.5.3 Overall Heat Transfer Coefficient for the spherical System 

2.6 Critical Thickness Of Insulation 

2.7.1 Plane Slab With Heat Sources 

2.7.2 Cylinder With Heat Sources 
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ONE-DIMENSIONAL, STEADY STATE HEAT CONDUCTION, WITH NO 

INTERNAL HEAT GENERATION 

 

2.1 Plane Slab 

The governing equation for a plane slab with One-dimensional, steady state heat 

conduction, with no internal heat generation is: 

 

   

   
           

Integrating Eq.1 once: 
   

   
    

Integrating again: 

 ( )                

Equation 2 is the general solution for the temperature distribution. Values of the two 

integration constants C1 and C2 are obtained from the two boundary conditions namely   

 

Figure (1) 

 

B.C.(i):                       

B.C.(ii):                     

From B.C.(i) and Eq.2    

                                                        ( )                   

From B.C.(ii) and Eq.2 

 ( )            

          

So: 

   (     )  ⁄  

Sub. values of C1 and C2 1n Eq.2 we get, 

 ( )  
(     )
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Eq. 3 can be written in non dimensional form: 
 ( )    

(     )
 

 

 
          

To find the heat flux, apply Fourier law, 

    
  

  
 

  

  
    (     )  ⁄  

So:  

    
(     )

 
  

(     )

 
        ⁄         

The heat flow rate is 

        
(     )

 
                   

 

2.2  Cylindrical Systems 

The governing equation for the Cylindrical systems, One-dimensional, steady state heat 

conduction, with no internal heat generation is: 

 

 
(
  

  
)  

   

   
   

Multiplying by r, we get. 

  

  
  

   

   
   

i.e. 
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)    

Integrating, 

 
  

  
    

  

  
 

  

 
 

Integrating again, 

 ( )       ( )          
 

Figure (1b) 
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The equation gives the temperature  distribution as a function of radius. 

Where C1 and C2 are constants of integration, and they are found out by applying the two B.C: 

1-                       

2-                       

B.C. (1) gives,                            ( )       (  )         

B.C. (2) gives,                            ( )       (  )         

Subtracting Eq. c from Eq. b: 

           (    ⁄ ) 

 

   
     

   (    ⁄ )
 

     

   (    ⁄ )
 

      
     

   (    ⁄ )
   (  ) 

Substituting C1 and C2 in equation a, we get 
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To find the heat transfer rate: 

[      
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2.3  Spherical Systems 

Spherical system is one of the most commonly used geometries in industry. It finds its 

applications as storage tanks, reactors, etc. in petrochemical, refineries and cryogenic 

industries. Sphere has minimum surface area for a given volume and material requirement to 

manufacture a sphere is minimum compared to other geometries. 

The general differential equation in spherical coordinates, for steady state, one-dimensional 

heat conduction in r direction only, with constant k, no heat generation and uniform heat 

generation is: 

   

   
 

 

 

  

  
   

The non-dimensional form for the temperature distribution equation is: 
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The heat transfer rate equation is: 

  
  

    
 

     

     
       

 

2.4 Heat Flow Through Composite Slabs 

Heat transfer through a composite slab, consisting of 2 or 3 layers of materials of different 

thermal conductivities. This is a very common application, e.g. in the case of insulation of 

furnace walls, insulation of walls of buildings, refrigerators, cold storage plants, hot water 

tanks, etc. 

While solving heat transfer problems in composite slabs under steady state conditions, it is 

convenient to use the thermal resistance concept. 

Consider a composite slab consisting of three layers 1,2 and 3 as shown in Fig.2. Let the 

thicknesses of the three layers be L1, L2 and L3, respectively; also, the respective thermal 

conductivities are k1, k2 and k3. 

Fluid at a temperature Ta flows on the surface with a convective heat transfer coefficient of ha 

and, a fluid at a temperature of Tb flows with a convective heat transfer coefficient of hb, as 

shown. Let Ta be higher than Tb, so that steady state heat transfer rate Q is from left to right as 

indicated in the Fig. 2. 

Assumptions: 

1. Steady state, one-dimensional heat conduction. 

2. No internal heat generation. 

3. Constant thermal conductivities k1, k2 and k3. 

4. There is perfect thermal contact between layers, i.e. there is no temperature drop at the 

interface and the temperature profile is continuous. 

Since it is a case of steady state conduction with no internal heat generation, it is clear from the 

First law that heat flow rate Q, through each layer is the same. Referring to Fig.2, it may be 

seen that heat flows from the fluid at temperature Ta to the left surface of slab 1 by convection, 

then by conduction through slabs 1, 2 and 3, and then, by convection from the right surface of 

slab 3 to the fluid at temperature Tb. 

Let the area of the slab normal to the heat flow direction be A(m
2
). Now, considering each case 

by turn. 

Figure (2) 
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Convection on the left surface of slab1 

     (     ) 
So 

      
 

   
       

Conduction through slab1 

  
   (     )

  
 

So 

(     )  
   

   
        

Conduction through slab2 

  
   (     )

  
 

So 

(     )  
   

   
        

Conduction through slab3 

  
   (     )

  
 

So 

(     )  
   

   
        

Convection on the left surface of slab3 

     (     ) 
So 

      
 

   
       

Adding Eq. a, b, c, d and e, we get: 

       [
 

   
 

  

   
 

  

   
 

  

   
 

 

   
]       

i.e. 

       ,              -       
where,   

Ra = convective resistance at left surface of slab 1, 

R1 = conductive resistance of slab 1, 

R2 = conductive resistance of slab 2, 

R3 = conductive resistance of slab 3, and 

Rb = convective resistance at right surface of slab 3. 

So, we write Eq. g as:  

  [
     

              
]        

Now, observe the analogy with Ohm's law. Refer to the Fig.3 for the equivalent thermal circuit. 

It is clear that (Ta - Tb) is the total temperature potential, Q is the heat current flowing and the 

total resistance is the sum of the individual five resistances which are in series. 
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2.4.1 Thermal resistances in series, we have, 

     ∑         

Figure (3) 

 

2.4.2 Thermal resistances in parallel 

Thermal resistances may be arranged in parallel too, as shown in Fig.3. 

From the analogy with the electrical circuit, when the resistances are in parallel, the total 

resistance is given by: 
 

    
 

 

  
 

 

  
 

 

  

   

 
 

  

   

 

     
    

     
      

 

Thermal resistances in series and parallel: general case of thermal resistances arranged in 

series and parallel is shown in fig. 4. 

Figure (4) 

Applying the rules of electrical circuit for series and parallel, we have, 
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Where      is the effective resistance of the three resistances R2, R3 and R4 in parallel as 

shown in fig. 4. 

 

    
 

 

  
 

 

  
 

 

  
          

 

2.4.3 Thermal resistance for conduction for cylindrical shell 

From Eq. d  
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/
      

Writing Eq. d in a form analogous to ohm’s law: 
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we observe that  thermal resistance for conduction for cylindrical shell is given by, 
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2.4.4 Thermal resistance for spherical system 
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] 

 

2.5.1 Overall Heat Transfer Coefficient, U (W/(M
2
C)) 

Consider the case of a furnace where heat is transferred by the hot gases to the inside surface by 

convection, then by conduction through one, two or three layers of brick and insulation, and 

finally to ambient air by convection at the outermost surface. This situation is represented in 

Fig. 2. 

Now, in most of the practical cases, temperature of the hot gases (Ta) and that of the ambient 

(Tb) are known; intermediate temperatures are not known. We would like to have the heat 

transfer given by a simple relation of the form: 

      (       )             

where, Q is the heat transfer rate (W), A is the area of heat transfer perpendicular to the 

direction of heat transfer, and (       )      is the overall temperature difference. 

Our problem is to derive a relation for U. 

Now, we have from Eq. 7, 

  [
     

              
]        

Comparing Eq. 7 and Eq. 13; 

      (       )  [
     

              
]  

     

∑   
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So 

   
 

∑   
      

  
 

 ∑   
              

 

   
      

  
 

 
  

 
  

  
 

  

  
 

  

  
 

 
  

       

 

Remember the expression for U as given by Eq. 15; it is easier and is applicable when we deal 

with other geometries, too.  

Concept of overall heat transfer coefficient is particularly useful in heat exchanger designs. 

Consider a heat exchanger where a hot fluid flows on one side of a heat exchanger wall and a 

cold fluid flows on the other side. Then, heat transfer is by convection on the hot side, by 

conduction across the separating wall and again by convection on the cold side, overall heat 

transfer coefficient is obtained by applying Eq. 15. 

Values of overall heat transfer coefficient for many practical cases are tabulated in handbooks. 

 

2.5.2 Overall Heat Transfer Coefficient for the Cylindrical System 

Referring to Fig. 5, it is clear that heat transfer occurs from hot fluid at Ta to the inner cylinder 

by convection, then through the inner and outer cylindrical shells by conduction and then to the 

outer cold fluid at Tb by convection. We would rather like to write the heat transfer rate in terms 

of the known overall temperature difference, as follows, 

      (       )        

where U is an overall heat transfer coefficient and A is the area normal to the direction of heat 

flow. In the case of a plane slab, A was a constant with x; however, in the case of a cylindrical 

system, area normal to the direction of heat flow is     , and clearly, this varies with r. 

Therefore, while dealing with cylindrical systems, we have to specify as to which area U is 

based on, i.e. whether it is based on inside area or outside area. (Generally, U is based on 

outside area since pipes are specified on outside diameters.) We write. 

        (       )       (       ) 

Figure (5) 

where,  

Ui = overall heat transfer coefficient based on inside area 
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Uo = overall heat transfer coefficient based on outside area 

Ai = heat transfer area on inside 

Ao = heat transfer area on outside 

Comparing with Eq. 7, we get, 

  
       

∑   
      (       )       (       ) 

So 

           
 

∑   
       

Therefore 
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Once the total thermal resistance ∑   is calculated,   , or    is easily found out from Eq.17. 

The concept of overall heat transfer coefficient in cylindrical systems is often useful in heat 

exchanger designs, since cylindrical geometry is a popular choice in heat exchangers. 

 

2.5.3 Overall Heat Transfer Coefficient for the spherical System 

        (       )       (       ) 

where,  

Ui = overall heat transfer coefficient based on inside area 

Uo = overall heat transfer coefficient based on outside area 

Ai = heat transfer area on inside 

Ao = heat transfer area on outside 

  
       

∑   
      (       )       (       ) 

So   

           
 

∑   
  

Therefore 
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Note: the above calculations give Ui and Uo in term of inside and outside radii. You need not to 

memorize them. To calculate Ui or Uo while solving numerical problem just remember Eq. 17 

 

2.6 Critical Thickness Of Insulation 

Let us consider a layer of insulation which might be installed around a circular pipe, as 

shown in Figure 7. The inner temperature of the insulation is fixed at Ti, and the outer surface is 

exposed to a convection environment at T∞. From the thermal network the heat 

transfer is 

  
   (     )

   (    ⁄ )
 

 
 

    

 

 

Figure (7) 

 

Now let us manipulate this expression to determine the outer radius of insulation ro, which will 

maximize the heat transfer. The maximization condition is 

  

   
   

    (     ) (
 

    
 

 
     

 
)

[
   (    ⁄ )

 
 

 
    

]
  

which gives the result 

   
 

 
 

The last equation expresses the critical-radius-of-insulation concept. If the outer radius is less 

than the value given by this equation, then the heat transfer will be increased by adding more 

insulation. For outer radii greater than the critical value an increase in insulation thickness will 

cause a decrease in heat transfer. The central concept is that for sufficiently small values of h 

the convection heat loss may actually increase with the addition of insulation because of 

increased surface area. 
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ONE-DIMENSIONAL, STEADY STATE HEAT CONDUCTION, WITH  INTERNAL 

HEAT GENERATION 

A number of interesting applications of the principles of heat transfer are concerned with 

systems in which heat may be generated internally. Nuclear reactors are one example; 

electrical conductors and chemically reacting systems are others.  

2.7.1 Plane Slab With Heat Sources 

Consider a plane slab of thickness 2L as shown in Fig. 8. Other dimensions of the slab are 

comparatively large, so that heat transfer may be considered as one-dimensional in the 

x-direction, as shown. 

The slab has a constant thermal conductivity k, and a uniform internal heat generation rate of qg 

(W/m
3
). Both the sides of the slab are maintained at the same, uniform temperature of Tw. 

Then, it is clear that maximum temperature will occur at the centre line, since the heat has to 

flow from the centre outwards. Therefore it is advantageous to select the origin of the 

rectangular coordinate system on the centre line, as shown. 

Let us analyse this case for temperature distribution within the slab and the heat transfer to the 

sides. 

Assumptions: 

1. One-dimensional conduction i.e. thickness L is small compared to the dimensions in the 

y and z directions. 

2. Steady state conduction, i.e. temperature at any point within the slab does not change 

with time: of course, temperatures at different points within the slab will be different. 

3. Uniform internal heat generation rate, qg (W/m
3
) 

Figure (8) 

 

4. Material of the slab is homogeneous (i.e. constant density) and isotropic (i.e. value of k 

is same in all directions). 

We wish to find out the temperature field within the slab and then the heat flux at any point 

We start with the general differential equation in Cartesian coordinates, for the 

above-mentioned assumptions. 
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B.C.:  

1)            ⁄   since the temperature is maximum at the center line. 

2)        
        

Integrating Eq. 1.1 
  

  
 

    

 
          

Integrating again, 

 ( )  
     

  
               

Applying B.C. (1) to Eq. a: 

     
Applying B.C. (2) to Eq. 1.2: 

   
     

  
    

      
    

  
 

Sub.    and   in Eq. 1.2: 

 ( )  
     

  
    

    

  
 

 ( )     
  

  
(     )        

Where, L is half thickness of the slab (Remember this) 

Also by observation,                 . 

Then putting     in Eq. 1.3: 

        
    

  
         

Then from Eq. 1.3 and Eq. 1.4, we get: 

    

       
 

     

  
   .

 

 
/
 

 

Heat transfer: 

In the case of a slab with no internal heat generation, heat flux was the same at every point 

within the slab, since       was a constant and independent of x. However, when there is 

heat generation,       is not independent of x (see Eq. a), and obviously, heat flux , 

  (            ) varies from point to point along x within the slab, for the heat transfer at 

both the surfaces. 

 

     (    )            ⁄  

By substituting Eq. a, we get: 

     0
    

 
1            
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2.7.2 Cylinder With Heat Sources 

consider a solid cylinder of radius, R and length, L. There is uniform heat generation within its 

volume at a rate of qg (W/m
3
 ). Let the thermal conductivity, k be constant. 

See the Figure. 

 

We would like to analyse this system for temperature distribution and maximum temperature 

attained. 

Assumption: 

1. Steady state conduction 

2. one-dimension conduction, in the r direction only 

3. Homogeneous, isotropic material with constant k 

4. Uniform internal heat generation rate. qg (W/m
3
). 

With the above stipulations, the general differential equation in cylindrical coordinates  

reduces to: 

   

   
 

 

 

  

  
 

  

 
        

Multiplying by r. 

 
   

   
 

  

  
 

    

 
 

Integrating: 

 
  

  
 

     

  
    

  

  
 

     

  
 

  

 
       

Integrating again: 

 ( )  
      

  
     ( )               

C1 and C2, the constants of integration are obtained by applying the boundary conditions 

B.C. are: 

1)              ⁄  i.e. at the temperature at the center of the cylinder,  temperature 

is finite and maximum (To = Tmax) because heat flow from inside to outside.  

2)                                

From B.C.1 and Eq. c, we get:      

From B.C.2 and Eq. 1.5, we get: 
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Sub.                      

 

 ( )  
      

  
    

     

  
 

 ( )     
  

  
(       )       

 

Maximum temperature occurs at the centre, because of symmetry considerations (i.e. heat 

flows from the center radially outward in all directions; therefore, temperature at the centre 

must be a maximum.) 

Therefore, putting r = 0 in Eq. 1.6: 

        
     

  
       

From Eq. 1.6 and 1.7, 

     

       
   .

 

 
/
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-CHAPTER FOUR- 

 

 

HEAT TRANSFER FROM EXTENDED SURFACES (FINS) 
 

 

 

 

 

4.1  Introduction 

4.2  Fins Of Uniform Cross Section-Governing Differential Equation 

4.3  Case (1) Infinitely Long Fin 

4.4  Case (2) Fin Of Finite Length With Insulated End 

4.5  Case (3) Fin Of Finite Length Losing Heat From Its End By Convection 

4.6  Performance Of Fins 

4.6.1 Fin Efficiency 

4.6.2 Fin Effectiveness (   ) 
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HEAT TRANSFER FROM EXTENDED SURFACES (FINS) 

 

4.1 Introduction 

Fins are generally used to enhance the heat transfer from a given surface. 

Consider a surface losing heat to the surroundings by convection. Then, the heat transfer rate 

Q, is given by Newton’s law of cooling: 

Q = h A (To - Ta) 

Where, 

h = heat transfer coefficient between the surface and the ambient 

A = exposed area of the surface 

To = temperature of the surface, and 

Ta = temperature of the surroundings. 

So if we need to increase the heat transfer rate from the surface, we can: 

1. increase the temperature potential, (To - Ta); but, this may not be possible always since 

both these temperature may not be in our control. 

2. increase the heat transfer coefficient h; this also may not be always possible or it may 

need installing an external fan or pump to increase the fluid velocity and this may 

involve cost consideration, or 

3. increase the surface area A; in fact, this is the solution generally adopted. Surface area 

is increased by adding an 'extended surface' (or, fin) to the 'base surface' by extruding, 

welding or by simply fixing it mechanically. 

Adding of fins can increase the heat transfer from the surface by several folds, e.g. an 

automobile radiator has thin sheets fixed over the tubes to increase the area several folds and 

thus increase the rate of heat transfer 

Generally, fins are fixed on that side of the surface when the heat transfer coefficient is low. 

Heat transfer coefficient are lower for gases as compared to liquids. Therefore, one can observe 

that fins are fixed on the outside of the tubes in a car radiator, where cooling liquid flows inside 

the tubes and air flows on the outside across fins. 

Likewise, in the condenser of a household refrigerator, freon flows inside the tubes and the fins 

are fixed on the outside of these tubes to enhance the heat transfer rate. 

 

Application areas of fins are: 

1. Radiators for automobiles 

2. Heat exchangers of a wide variety, used in different industries 

3. Cooling of electric motors, transformers, etc. 

4. Cooling of electronic equipments, chips, I.C. boards etc. 

 

Types of fins: 

There are innumerable types of fins used in practice some of the more common types are 

shown in Fig. 

Fins of rectangular(a), circular, triangular(d), trapezoidal(c) and conical(g) sections are some 

of the types commonly used.  

 

 

http://he.it/


Lecture Note Of Heat Transfer  By  Mustafa Sabah Mahdi  25 

 

 

 

 

 

Determination of heat transfer in fins requires information about the temperature profile in the 

fin. We get the differential equation describing the temperature distribution in the fin by the 

usual procedure of writing an energy balance for a differential volume of the fin. 

 

4.2 Fins of Uniform Cross Section (Rectangular or Circular)-Governing Differential 

Equation 

Let us analyst' heat transfer in a fin of rectangular cross section. Same analysis will be valid for 

a fin of circular cross section also. 

Consider a fin of rectangular cross section attached to the base surface, as shown in Fig.   

Let L be the length of fin, 

w, its width and 

t its thickness. 

Let P be the perimeter = 2 (w + t).  

Let Ac be the area of cross section and  

To the temperature at the base, as shown. 

 

Assumptions: 

1. Steady state conduction, with no heat generation in the fin 

2. Thickness t is small compared to length L and width w, i.e. one-dimensional 

conduction in the X-direction only. 

3. Thermal conductivity, k of the fin material is constant. 

4. Uniform heat transfer coefficient h, over the entire length of fin. 

5. No bond resistance in the joint between the fin and the base wall, and 

6. Negligible radiation effect. 

 

Base temperature, To is higher than the ambient temperature, Ta Temperature will drop along 

the fin from the base to the tip of the fin, as shown in Fig. Heat transfer will occur by 
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conduction along the length of the fin and by convection, with a heat transfer coefficient h, 

from the surface of the fin to the ambient. 

Our aim is to derive a differential equation governing the temperature distribution in the fin. 

Once we get the temperature field, heat flux at any point can easily be obtained by applying 

Fourier's law. 

 

 

 

Consider an elemental section of thickness dx at a distance x from the base as shown. Let us 

write an energy balance for this element: 

Energy going into the element by conduction = (Energy leaving the element by conduction) + 

Energy leaving the surface of the element by convection) 

 

                   
 

   = heat conducted into the element at x 

      = heat conducted out of the element at x + dx, and 

      = heat convected from the surface of the element to ambient 

 

We have: 

       

  

  
 

         
   

  
   

                                          

  

  
                                                      

          

  

  
    

   

   
   

          (    ) 

        (    )(    ) 

Where As is the surface area of the element, P is the perimeter substituting the terms in Eq. a: 
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 (    

  

  
    

   

   
  )    (    )(    ) 

   

   

   
     (    )(    )    

   

       (    )         

Where  

  √
    

     
 

Note that m has units of: (m
-1

) and is a constant, since for a given operating conditions of a fin, 

generally h and k are assumed to be constant. 

Now, define excess temperature, 

  (    ) 

Therefore 

  

  
 

  

  
           

   

   
 

   

   
 

Substituting in Eq. b, 

   

   
              

Eq.1 is the governing differential equation for the fin of uniform cross section considered. 

Eq.1 is a second order, linear, ordinary differential equation. Its general solution is given by 

calculus theory, in two equivalent forms: 

 ( )      
        

         

where, C1 and C2 are constants 

and, 

 ( )         (  )        (  )        

 

where A and B are constants, and cosh and sinh are hyperbolic functions, defined in Table 1. 

Eq.2a or .2b describes the temperature distribution in the fin along its length. 

To calculate the set of constants C1 and C2, or A and B, we need two boundary conditions: 

One of the B.C.'s is that the temperature of the fin at its base, i.e. at x = 0, is To and this is 

considered as known. 

i.e. B.C. (1): at x = 0, T = To 

Regarding the second boundary condition, there are several possibilities: 

Case (1): Infinitely long fin. 

Case (2): Fin insulated at its end (i.e. negligible heat loss from the end of the fin), and 

Case (3): Fin losing heat from its end by convection. 

It may be remarked here, that while for case (1), it is convenient to choose the solution in the 

form given by Eq. 2a and for cases (2) and (3), choosing the solution in the form given by Eq. 

2b makes the analysis easy. 
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4.3 Case (1) Infinitely Long Fin 

This simply means that the fin is very long. Consequence of this assumption is that temperature 

at the tip of the fin approaches that of the surrounding ambient as the fin length approaches 

infinity. See Fig.  

 

To determine the temperature distribution; The governing differential equation, as already 

derived, is given by Eq.1 

   

   
              

And, we shall choose for its solution for temperature distribution Eq. (2a), i.e. 

 ( )      
        

         

C1 and C2 are obtained from the B.C.s: 
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B.C. (1):                 

B.C. (2):                , the ambient temperature. 

From B.C. (1):  

          ( )             

From B.C. (2): 

         ( )            

From B.C. (2) and Eq. 2.a:      

From B.C. (1) and Eq. 2.a:       

Substituting   and    back in Eq. 2.a, we get: 

 ( )      
    

 

 ( )

  
       

  

 ( )    

     
            

Eq. 3 gives the temperature distribution in an infinitely long fin of uniform cross section, along 

the length. 

To determine the heat transfer rate: 

Hat transfer rate from the fin may be determined by either of the two ways: 

a) by the application of Fourier's law at the base of the fin, i.e. in steady state, the heat 

transfer from the fin must be equal to the heat conducted into the fin at its base. 

         

  ( )

  
     

  ( )

  
           

b) by integrating the convective heat transfer for the entire surface of the fin, i.e. 

     ∫    
 

 

 (     )   ∫        
 

 

      

By method (a): 

         

  ( )

  
     

  ( )

  
        

         

  ( )

  
        

         [
 

  
(    

   )]         

         (  ),    
   -        

                     

Where 

  √
    

     
 

     √             √          (     )     

Eq. 4 and Eq. 5 gives the heat transfer rate through the fin. 

Let us verify this result from method (b): 
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By method (a): 

     ∫    
 

 

 (     )   ∫        
 

 

      

     ∫         
     

 

 

  

     
 

 
        

     √             √          (     )               

 

4.4 Case (2) Fin of finite length with insulated end 

End of a fin is generally not insulated, so here what we mean is that the heat transfer from the 

end of the fin is negligible as compared to the heat transfer from the surface of the fin. Mostly 

this is true, since the area of the end of the fin is negligible as compared to the exposed surface 

area of the fin; in fact this is the most important case. See fig. 

 

 

 

To determine the temperature distribution; The governing differential equation, as already 

derived, is given by Eq.1 

   

   
              

And, we shall choose for its solution for temperature distribution Eq. (2b), i.e. 

 ( )         (  )        (  )        

A and B are obtained from the B.C.s: 

B.C. (1):                     ( )           

B.C. (2):            
  

  
 

  

  
       since the end is insulated. 

From B.C. (1) and  Eq. 2b: 

     

From B.C. (2) and  Eq. 2b: 

(
  

  
)
   

   

         (  )           (  )                                              

Sub. A 

          (  )           (  )    
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    (  )

    (  )
 

Substituting for A and B in Eq. 2b  

 ( )          (  )    

    (  )

    (  )
     (  ) 

 ( )

  
 

    (  )      (  )      (  )      (  )

    (  )
 

 ( )

  
 

    (  (   ))

    (  )
                                       

 ( )    

     
 

    (  (   )))

    (  )
       

Eq.6 or 7 gives the temperature distribution in the fin with negligible heat transfer from its end. 

Temperature at the end of the fin: 

This is easily determined by putting x=L in Eq. 6 or 7 

 ( )

  
 

 

    (  )
       

     

     
 

 

    (   )
        

   
     

    (  )
        

Eq. 7b gives the Temperature at the end of this fin (i.e. at x=L) 

 

To determine the heat transfer rate: 

Hat transfer rate from the fin may be determined by the application of Fourier's law at the base 

of the fin, i.e. in steady state, the heat transfer from the fin must be equal to the heat conducted 

into the fin at its base. 

         (
  ( )

  
)
   

     (
  ( )

  
)
   

 

           (
       (  (   ))

    (   )
)

   

 

                   (   )       

     √                (   )      

 

Eq.8 or 9 gives the heat transfer rate from the fin, insulated at its end. 

Comparing Eq. 8 with that obtained for heat transfer from an infinitely long fin, i.e. Eq. 4, we 

see that a fin with insulated end becomes equivalent to an infinitely long fin     (   )   . 
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4.5 Case (3) Fin of finite length losing heat from its end by convection 

This is a more realistic case, though the relations developed are a little more complicated, see 

fig. 

 

 

Here, heat conducted to the tip of the fin must be equal to the heat convected away from the tip 

to the ambient, i.e. 

    (
  

  
)
   

     (     ) 

   (
  

  
)
   

      

To determine the temperature distribution; The governing differential equation, as already 

derived, is given by Eq.1 

   

   
              

And, we shall choose for its solution for temperature distribution Eq. (2b), i.e. 

 ( )         (  )        (  )        
A and B are obtained from the B.C.s: 

B.C. (1):                     ( )           

Applying B.C. (1) to Eq. 2b: 

     

B.C. (2):  
     heat conducted to the end = heat convected from the end 

    (
  ( )

  
)

   

      ( )        ( )        

After applying the B.C.s and using Eq. 2b and the relation in table 1, we get: 

 ( )

  
 

    (  (   ))  
 

   
    ( (   ))

    (   )  
 

   
    (   )

      

Eq. 10 gives the temperature distribution in a fin losing heat by convection at its end. 

Note that when    , i.e. for negligible heat transfer at the tip of the fin, Eq. 10 reduced to Eq. 

6, for a fin with insulated tip.  

 



Lecture Note Of Heat Transfer  By  Mustafa Sabah Mahdi  33 

 

To determine the heat transfer rate: 

Hat transfer rate from the fin may be determined by the application of Fourier's law at the base 

of the fin, i.e. in steady state, the heat transfer from the fin must be equal to the heat conducted 

into the fin at its base. 

         (
  ( )

  
)
   

     (
  ( )

  
)
   

 

           
    (   )  

 
   

  
 

   
     (   )

       

Eq. 11 gives the heat transfer rate from a fin losing heat by convection at its tip. 

Note: Eq. 11 is important since it represents the heat transfer rate for a practically important 

case of a fin loosing heat from its end. However, it is rather complicated to use. So, in practice 

even when the fin loosing heat from its tip, it is easier to use Eq. 8 and 9 obtained for a fin with 

insulated tip, but with a correct length, Lc, rather than the actual length, L, to include the effect 

of convection at the tip. In that case only to evaluate Q, L is replaced by a corrected length Lc, 

in Eq. 8 and 9, as follows: 

For rectangular fins:                   
 

 
  where t is the thickness of fin 

For cylindrical (round) fins:            
 

 
   where r is the radius of the cylindrical fin. 

 

4.6 Performance of Fins 

Recollect that purpose of attaching fins over a surface is to increase the heat transfer rate. How 

well this purpose is achieved is characterized by two performance parameters: 

1)  Fin efficiency,   , and 

2) Fin effectiveness,   . 

 

4.6.1 Fin Efficiency 

Fin transfers heat to the surroundings from its surface, by 

convection. For convection heat transfer, the driving force is the 

temperature difference between the surface and the surrounding. 

However, temperature drop along the length of the fin because of 

the finite thermal conductivity of the fin material; so, heat 

transfer becomes less effective towards the end of the fin. 

Obviously, in the ideal case of the entire fin being at the same 

temperature as that of the base wall, the heat transferred from the 

fin will be maximum, So fin efficiency is defined as the amount 

of heat actually transferred by a given fin to the ideal amount of 

heat that would be transferred if the entire fin were at its base 

temperature, i.e. 

   
    

    
      

Where, 

     = actual amount of heat transferred from the fin, and 

     = maximum (or ideal) amount of heat that would be transferred from the fin, if the entire 

fin surface were at the temperature of the base, 
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(a)   For an infinitely long fin: 

For an infinitely long fin, actual heat transferred is given by Eq. 5: 

     √             √          (     )     

To calculate    , if the entire fin surface were to be at a temperature of To, the convective heat 

transfer from the surface would be: 

           (     )      

Where, P is the perimeter of the fin section and (P.L) is the surface area of the fin. 

Dividing Eq. 5 by Eq. A: 

   
√          (     )

      (     )
 

   
 

√
   
    

  

 

   
 

   
       

(b)   For a fin with insulated end: 

For the case of a fin with an insulated end, we get actual heat transferred      from Eq. 9: 

     √                (   )      

and, fin efficiency is given by: 

   
√          (     )      (   )

      (     )
 

   
    (   )

√
   
    

  

 

   
    (   )

   
     

   
    (   )

   
 

Note For the more realistic case of a fin losing heat from its end, as stated earlier, to calculate 

heat transfer, Eq. 9 itself may be used, but, with a corrected length Lc in place of L. 
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Note: for a thin fin or a very wide fin i.e. w >> t, we can write: 

    √
   

    
   √

  (     )

     
   

    √
     

     
   √

   

   
   

Multiplying the numerator and the dominator by L
1/2

 gives: 

    √
   

      
  

 
  

    √
   

    
  

 
  

Where, Am = (L.t), is the profile area for the rectangular section 

Also  
 

  
 

(     )

  
 

  

  
 

 

 
 

Also 

  √
   

    
 √

   

   
 

 

 

 

 

 

 



Lecture Note Of Heat Transfer  By  Mustafa Sabah Mahdi  36 

 

4.6.2 Fin Effectiveness (   ) 

Consider a fin of uniform cross-sectional area Ac, fixed to 

a base surface. Purpose of the fin is to enhance the heat 

transfer. If the fin were not there, heat would have been 

transferred from the base area Ac, by convection. By 

attaching the fin, area for convection increases i.e. 

convective resistance ( 1= /(h.A)) decreases; however, it 

is obvious that a conduction resistance due to the solid fin 

is now introduced and the total heat transfer would 

depend upon the net thermal resistance. As we go on 

increasing the length of fin, convection resistance will go 

on decreasing, but conduction resistance will go on 

increasing. This means that attaching a fin may not 

necessarily result in effectively increasing the heat 

transfer. Therefore, how effective the fin is in enhancing 

the heat transfer  is characterised by a parameter called 

fin effectiveness. 

Fin effectiveness is defined as the ratio of the heat transfer rate with the fin in place, to the heat 

transfer that would occur if the fin were not there, from the area of the base surface where the 

fin was originally fixed. 

   = (heat transfer rate with fin)/(heat transfer rate without fin) 

   
    

     (     )
     

Fin effectiveness equal to 1 means that there is no enhancement of heat transfer at all by using 

the; fin if the fin effectiveness is less than 1, that means that the fin actually reduces the heat 

transfer by adding additional thermal resistance! Obviously,   should be as large as possible. 

Use of fins is hardly justified unless fin effectiveness is greater than about 2, i.e.   > 2. 

To get an insight into the physical implications of fin effectiveness, let us consider an infinitely 

long fin  

Then, we have: 

   
√          (     )

     (     )
 

    √
   

    
       

Eq. 17 is an important equation. Following significant conclusions may be derived from this 

equation: 

1.  Thermal conductivity, k should be as high as possible; that is why we see that 

generally, fins are made up of copper or aluminium. Of course, aluminium is the 

preferred material from cost and weight considerations. 

2.  Large ratio of perimeter to area of cross section is desirable; that means, thin, closely 

spaced fins are preferable. However, fins should not be too close as to impede the flow 

of fluid by convection. 
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3.  Fins are justified when heat transfer coefficient h is small, i.e. generally on the gas side 

of a heat exchanger rather than on the liquid side. For example, the car radiator has fins 

on the outside of the tubes across which air flows. 

4.  Requirement that    > 2, gives us the criterion:  

   

    
         

These two important parameters, namely,    and    are related to each other as follows: 

   
    

     
 

    

     (     )
 

        (     )

     (     )
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-CHAPTER FIVE- 

 

 

UNSTEADY STATE CONDUCTION  

TRANSIENT HEAT CONDUCTION  

TIME DEPENDENT CONDUCTION 

 

 

 

5.1 Introduction 

5.2 Lumped-Heat-Capacity System 

5.2.1 Criteria For Lumped System Analysis (Biot Number And Fourier Number) 

5.3 One-Dimensional Transient Conduction In Large Body When Biot Number >0.1 

5.3.1 Heisler Charts  

5.4 Transient Heat Flow In A Semi-Infinite Solid 

  

'OR' 

'OR' 



Lecture Note Of Heat Transfer  By  Mustafa Sabah Mahdi  39 

 

Unsteady State Conduction or Transient Heat Conduction or Time 

Dependent Conduction 

 

5.1 Introduction 

Earlier, we derived the general differential equation for conduction and then applied it to 

problems of increasing complexity, e.g. first we studied heat transfer in simple geometries 

without heat generation and then we studied heat transfer when there was internal heat 

generation. In all these problems, steady state heat transfer was assumed, i.e. the temperature 

within the solid was only a function of position and did not depend on time, i.e. 

mathematically, T = T(x, y, z). However, all the process equipments used in engineering 

practice, such as boilers, heat exchangers, etc. have to pass through an unsteady state in the 

beginning when the process is started, and, they reach a steady state after sufficient time has 

elapsed. Or, as another example, a billet being quenched in an oil bath, goes through 

temperature variations with both position and time before it attains a steady state. Conduction 

heat transfer in such an unsteady state is known as transient heat conduction or, unsteady state 

conduction, or time dependent conduction. Obviously, in transient conduction, temperature 

depends not only on position in the solid, but also on time. So, mathematically, this can be 

written as T= T(x, y, z,  ), where   represents the time coordinate.  

Naturally, solutions for transient conduction problems are a little more complicated compared 

to steady state analysis, since now, an additional parameter, namely time ( ) is involved. 

Typical examples of transient conduction occur in: 

(i)  heat exchangers 

(ii) boiler tubes 

(iii) cooling of cylinder heads in I.C. engines 

(iv) heat treatment of engineering components and quenching of ingots 

(v) heating of electric irons 

(vi) heating and cooling of buildings 

(vii) freezing of foods, etc. 

To solve a given one-dimensional, transient conduction problem, one could start with one of 

the relevant general differential equations discussed earlier and by solving it in conjunction 

with appropriate boundary conditions, and get the temperature distribution as a function of 

position and time. 

 

5.2 Lumped-heat-capacity system 

It is the systems that may be considered uniform in temperature. This type of analysis is 

called the lumped-heat-capacity method. If a hot steel ball were immersed in a cool pan of 

water, the lumped-heat-capacity method of analysis might be used if we could justify an 

assumption of uniform ball temperature during the cooling process. Clearly, the temperature 

distribution in the ball would depend on the thermal conductivity of the ball material and the 

heat-transfer conditions from the surface of the ball to the surrounding fluid (i.e., the 

surface-convection heat transfer coefficient).We should obtain a reasonably uniform 

temperature distribution in the ball if the resistance to heat transfer by conduction were small 

compared with the convection resistance at the surface, so that the major temperature gradient 



Lecture Note Of Heat Transfer  By  Mustafa Sabah Mahdi  40 

 

would occur through the fluid layer at the surface. The lumped-heat-capacity analysis, then, is 

one that assumes that the internal resistance of the body is negligible in comparison with the 

external resistance. The convection heat loss from the body is evidenced as a decrease in the 

internal energy of the body, as shown in Figure (1). Thus 

    (    )          
  

  
      

    (    )                
                 (    )                  

            
  

  
 

  

 
  

   

      
    

Integration between  =0 (i.e.   =  i) to any   (       ( )) 

∫
  

 

  

  

 ∫ 
   

      
   

 

 

 

           
   

      
  

  
  

  
 

    

    
 

  *
( ( )    )

(     )
+  

    

    
 

( ( )    )

(     )
    *

    

    
+      

    

  
   its known as time constant and has a unit of time 

( ( )    )

(     )
    0

  

 
1 

Larger the value of time constant t, longer is the time required for the body to reach 

temperature 

 

 

 

 

 

 

 

 

 

 

 

Figure(1) lumped system analysis 
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5.2.1 Criteria for lumped system analysis (Biot number and Fourier number) 

For the simple analysis made above, we had the fundamental assumption that the internal 

conductive resistance of the body was negligible as compared to the convective resistance at its 

surface. This was stated in a rather qualitative way Now, let us study the criteria required for 

the lumped system analysis to be applicable. Consider a plane slab in steady state, transferring 

heat to a fluid on its surface with a heat transfer coefficient of h, as shown in the fig (2). 

Figure (2) Biot number and temperature distribution in a plane wall 

 

Let the surface on the left be maintained at temperature T1 and the surface on the right is at a 

temperature of T2 as a result of heat being  lost to a fluid at temperature Ta, flowing with a heat 

transfer coefficient h. Writing an energy balance at the right hand surface. 

   

 
 (     )      (     ) 

Rearranging 

(     )

(     )
 

 
  
 
  

 
     

     
 

  

 
    

 

the term, (h.L)/k, is a dimensionless number, known as Biot number. Biot number is a measure 

of the temperature drop in the solid relative to the temperature drop in the convective layer It is 

also interpreted as the ratio of conductive resistance in the solid to the convective resistance at 

its surface. Note from Fig.(2) the temperature profile for Bi « l It suggests that one can assume 

a uniform temperature distribution within the solid. For Bi « 1, temperature gradient in the solid 

is small and temperature can be taken as a function of time only. Note also that for Bi » 1, 

temperature drop across the solid is much larger than that across the convective layer at the 

surface. Therefore, lumped system analysis is applicable, only if Bi « l.  

Therefore we can write eq.(2) as: 
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( ( )    )

(     )
    *

    

    
+                

   
   

 
 

Where    
 

 
  

   for common shapes: 

1. plane wall =half thickness of the wall  

2. cylinder = R/2 

3. sphere = R/3 

4. cube, side L  =  L/6 

Now the term [
   

    
]   can be written as follows: 

*
   

    
+  [

   

 
]  *

  

     
 
+  [

   

 
]  [

  

  
 
]        

                                    [
  

  
 
]                 

 

Fourier number: Like Biot number, is an important parameter in transient heat transfer 

problems. Its signifies the degree of penetration of heating or cooling effect through a solid. For 

small Fourier number large time will be required to get significant changes 

 Now we can write eq. (2) as: 

( ( )    )

(     )
    (      )                     

 

 

 

5.3 One-dimensional transient conduction in large plane walls, long cylinders and 

spheres when Biot number > 0.1 

There are many situations in practice, where the temperature gradient in the solid is not 

negligible (i.e. Bi > 0.1) and the lumped system analysis is not applicable. In such situations, 

we start with the general differential equation for time dependent, one-dimensional conduction 

in the appropriate coordinate system and solve it in conjunction with the boundary conditions. 

In this section, we shall analyse one-dimensional transient conduction in large plane walls, 

long cylinders spheres when Bi > 0.1. 

Fig. (3). shows schematic diagram and coordinate systems for a large, plane slab, long cylinder 

and a sphere. 
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consider a plane slab of thickness 2L, shown in Fig. (a) above. Initially, i.e. at    = 0, the slab 

is at an uniform temperature, Ti, Suddenly, both the surfaces of the slab are subjected to 

convection heat transfer with an ambient at temperature Ta, with a heat transfer coefficient of h, 

as shown. Since there is geometrical and thermal symmetry, we need to consider only half the 

slab, and that is the reason why we chose the origin of the coordinate system on the mid-plane. 

Then, we can write the mathematical formulation of the problem for plane slab as follows: 

   

   
 

 

 

  

  
 

  

   
                        

  
  

   
   (    )                      

                           

The solution of the above problem, however, is rather involved and consists of infinite series. 

So, it is more convenient to present the solution either in tabular form or charts. 

Note: For all these three geometries, as mentioned, the solution involves infinite series, which 

are difficult to deal with. However, it is observed that for         , considering only the first 

term of the series and neglecting other terms, involves an error of less than 2%. Generally, we 

are interested in times, Fo > 0.2. So, it becomes very useful and convenient to use one term 

approximation solution, for all these three cases 

 

5.3.1 Heisler Charts  

Results of analyses for these geometries have been presented in graphical form by Heisler in 

1947. These graphs are shown in figs (5), (6) and (7) , for plane walls, long cylinders, and 

spheres, respectively. 

How to use these charts? 

First chart in each of these figures gives the non-dimensionalised centre temperature To. i.e. at 

x = 0 for the slab of thickness 2L, and at r = 0 for the cylinder and sphere, at a given time  . 

Temperature at any other position at the same time  , is calculated using the next graph, called 

'position correction chart'. Third chart gives Q/Qmax. 
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Procedure of using these charts to solve a numerical problem is as follows: 

1. First of all, calculate Bi from the data, with the definition of Bi, i.e. Bi = (h.Lc)/k, where 

Lc. is the characteristic dimension, given as: Lc = (V/A) i.e. Lc = L, half-thickness for a 

plane wall, Lc = R/2 for a cylinder, and Lc=R/3 for a sphere. If Bi < 0.1, use lumped 

system analysis; otherwise, go for chart solution. 

2. If Bi > 0.1, i.e. if we have to go for chart solution, calculate the Biot number again with 

the appropriate definition, i.e.     (    ) for a plane wall where L is half-thickness, 

and (    ) for a cylinder or sphere, where R is the outer radius. Also, calculate 

Fourier number,           for the plane wall, and            for a cylinder or 

sphere. 

3. To calculate the centre temperature, use chart (a) from Figs. (5), (6) and (7), depending 

upon the geometry being considered. Enter the chart on the x-axis with the calculated 

   and draw a vertical line to intersect the (    ) line; from the point of intersection, 

move horizontally to the left to the y-axis to read the value of      (       ) (    

  ) Here, To is the centre temperature, which can now be calculated since Ti and To are 

known. 

4. To calculate the temperature at any other position, use Fig. (b) of Figs. (5), (6) and (7), 

as appropriate. Enter the chart with      on the x-axis, move vertically up to intersect 

the (   ) or (   ) curve as the case may be, and from the point of intersection, move 

to the left to read on the y-axis, the value of      (       ) (      ). Here, T is the 

desired temperature at the indicated position.  

5. To find out the amount of heat transferred Q, during a particular time interval   from 

the beginning (i.e.   = 0), use Fig. (c) from Figs. (5), (6) and (7), depending upon the 

geometry. Enter the x-axis with the value of (Bi
2
.Fo) and move vertically up to intersect 

the curve representing the appropriate Bi and move to the left to read on the y-axis, the 

value of Q/Qmax, Q is then easily found out since Qmax = m Cp (Ti - Ta).  

 

Note the following in connection with these charts: 

1-  These charts are valid for Fourier number Fo > 0.2. 

2-  Specifically, remember that while calculating Biot number, characteristic length (Lc) 

used is L, the half-thickness for a plane wall, and outer radius, R for the cylinder and the 

sphere (Lc is, now, not equal to:(V/A)). 

3- Note from the 'position correction charts' that at          (              )  
temperature within the body can be taken as uniform, without introducing an error of 

more than 5%. This was precisely the condition for application of lumped system 

analysis'. 

4- It is difficult to read these charts accurately, since logarithmic scales are involved; also 

the graphs are rather crowded with lines. However, these graphs are extremely useful 

for a quick estimation of values required. 
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5.4 Transient Heat Flow In A Semi-Infinite Solid 

See Fig. 4. The solid is initially at a uniform temperature Ti and for times   > 0, the boundary 

surface at x= 0 is maintained at temperature Ts. Starting with the differential Eq. for 

one-dimensional, time dependent  conduction, for these boundary conditions, the 

non-dimensional temperature distribution (solved by the Laplace-transform technique) in the 

solid is obtained  

as: 
 (   )    

     
    

 

 √  
          

where the Gauss error function *(   ( )+ is tabulated in table 1. 

 

Figure (4) 

 

                             
 

 √  
                      ( )  

 (   )    

     
 

 

Total heat flow during     to      

               (     ) √
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Figure (5) 
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Figure (6) 
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Figure (7) 
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PRINCIPLE OF CONVECTION AND BOUNDARY LAYER 

 

6.1 Introduction 

In the previous lectures, we studied about conduction heat transfer, where heat transfer was a 

molecular phenomenon and was considered mainly in solids; convection was mentioned only 

in passing and was considered only as a boundary condition while analysing conduction heat 

transfer. 

In convection heat transfer, there is a flow of fluid associated with heat transfer and the energy 

transfer mainly due to bulk motion of the fluid. When the flow of fluid is caused by an external 

agency such as a fan or pump, the resulting heat transfer is known as 'Forced convection heat 

transfer; when the flow of fluid is due to density differences caused by temperature differences, 

the heat transfer is said to be by 'Natural (or free) convection'. For example, if air is blown on a 

hot plate by a blower, heat transfer occurs by forced convection, whereas, a hot plate simply 

hung in air will lose heat by natural convection. 

 

6.1.1 Newton's Law of Cooling and Heat Transfer Coefficient 

Governing rate equation for convection heat transfer is given by 'Newton's Law of Cooling. 

According to this law, the heat flux in convection heat transfer is given by.: 

        (     )     

where h is the convective heat transfer coefficient and (Ts - Ta) is the temperature difference 

between the hot surface and the flowing fluid. Unit of h is: W/(m
2
C) so that the heat flux has 

units of W/m
2
. 

Though Eq. a looks very simple, it is very subtle. The reason is: heat transfer coefficient, h, 

depend on several factors such as: 

1. the fluid properties like density, viscosity, thermal conductivity and specific heat, 

2. type of flow (laminar or turbulent) i.e. (velocity of the flow, shape of fluid 

passage(circular, rectangle or a flat surface)), 

3. nature of the surface (rough/smooth) and 

4. orientation of the surface 

In fact, entire thrust in determining the heat transfer rate in convection is to find out this value 

of “h” in a reliable manner. 

 

6.1.2 Nusselt Number 

Since we know that adjacent to the solid surface the fluid layer is stationary and the heat 

transfer in this fluid layer is by conduction  

         (    )    ⁄  

and the heat transferred by convection subsequently must be equal to this fluid layer, we can 

equate Eqs. a and b: 

  (     )     (    )⁄  

  (   (    )⁄ ) (     )⁄  

i.e. the problem of finding out the value of “h” reduces to the task of finding out the 

temperature gradient (     ) at y = 0 i.e. at the surface. Since the heat transfer coefficient 

depends on flow conditions, its value on a surface varies from point to point. However, we 
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generally take an average value of “h” by properly averaging the local value of heat transfer 

coefficient over the entire surface. 

It is also common practice to non-dimensionalise the heat transfer coefficient with 'Nusselt 

number. Nusselt number is defined as: 

   
   

  
 

where   is a characteristic dimension and    is the fluid thermal conductivity. 

To get a physical interpretation of the Nusselt number, consider a thin layer of fluid with 

thickness   and with a temperature difference of    between the two surfaces. Then, we 

have: 
     

     
 

     

      
  
 

 
   

  
    

In other words, Nusselt number tells us how much the heat transfer is enhanced due to 

convection as compared to only conduction. Or, higher the Nusselt number, larger the heat 

transfer by convection.  

 

6.2 Velocity boundary layer 

Let us first study the development of boundary layer for a flow over a flat plate. Flow over a flat 

plate is important from a practical point of view, since flow over turbine blades and aerofoil 

sections of air plane wings can be approximated as flow over a flat plate. See Fig. 1. 

Consider a thin, flat plate. The leading edge and the trailing edge of the plate are shown in the 

Fig.1. Let a fluid approach the flat plate at a free stream velocity of U. The fluid layer 

immediately in contact with the plate surface adheres to the surface and remains stationary, and 

in fluid mechanics, this phenomenon is known as 'no slip condition. Then, the fluid layer next 

to this stationary layer has its velocity retarded because of the viscosity effects i.e. due to the 

frictional force or 'drag' exerted between the stationary and the moving layers. This effect 

continues with subsequent layers up to some distance in the y-direction till the velocity equals 

the free stream velocity U. This region of fluid layer in which the viscosity effects are 

predominant is known as the 'velocity (or hydrodynamic) boundary layer', or simply the 

'boundary layer'.  
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Note the following points in connection with the boundary layer: 

 

1. The boundary layer divides the flow field into two regions: one, 'the boundary layer 

region' where the viscosity effects are predominant and the velocity gradients are very 

steep, and, second, inviscid region' where the frictional effects are negligible and the 

velocity remains essentially constant at the free stream value. 

2. Since the fluid layers in the boundary layer travel at different velocities, the faster layer 

exerts a drag force ( or frictional force) on the slower layer below it; the drag force per 

unit area is known as shear stress ( )'. Shear stress is proportional to the velocity 

gradient at the surface. This is the reason why in fluid mechanics, the velocity profile 

has to be found out to determine the frictional force exerted by a fluid on the surface. 

Shear stress is given by: 

     (
  

  
)
   

           ⁄  

Where   is 'dynamic viscosity' of the fluid; its unit is kg/(ms). Viscosity is a measure 

of resistance to flow. For liquids, viscosity decreases as temperature increases. 

3. Use of the above Eq. to determine the surface shear stress is not very convenient, since 

it requires a mathematical expression for the velocity profile; so, in practice, surface 

shear stress is determined in terms of the free stream velocity from the following 

relation: 

     

   

 
           ⁄  

where    is a 'friction coefficient' or 'drag coefficient',   is the density of the fluid.    

is determined experimentally in most cases. Drag coefficient varies along the length of 

the flat plate. Average value of drag coefficient (   )  is calculated by suitably 

integrating the local value over the whole length of the plate and then the drag force 

over the entire plate surface is determined from: 

         
   

 
          

where A = surface area, m
2
. 

4. Starting from the leading edge of the plate, for some distance along the length of the 

plate, the flow in the boundary layer is 'laminar' i.e. the layers of fluid are parallel to 

each other and the flow proceeds in a systematic, orderly manner. However, after some 

distance, disturbances appear in the flow and beyond this 'transition region', flow 

becomes completely chaotic and there is complete mixing of 'chunks' of fluid moving 

in a random manner i.e. the flow becomes 'turbulent'. 

5. Transition from laminar to turbulent flow depends primarily on the free stream 

velocity, fluid properties, surface temperature and surface roughness, and is 

characterized by 'Reynolds number'. Reynolds number is a dimensionless number, 

defined as:  

Re = (Inertia forces/Viscous forces).  Or, 
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where       

U = free stream velocity, m/s 

x = characteristic length i.e. for a flat plate it is the length along the plate in the flow 

direction, from the leading edge, and 

v = kinematic viscosity of fluid =   ⁄  , m
2
/s, where   is the density of fluid. 

When the Reynolds number is low, i.e. when the flow is laminar, inertia forces are 

small compared to viscous forces and the velocity fluctuations are 'damped out' by the 

viscosity effects and the layers of fluid flow systematically, parallel to each other. 

When the Reynolds number is large, i.e. when the flow is turbulent, inertia forces are 

large compared to the viscous forces and the flow becomes chaotic. For a flat plate, in 

general, for practical purposes, the 'critical Reynolds number, at which the flow 

changes from laminar to turbulent is taken as (     ). It should be understood clearly 

that this is not a fixed value but depends on many parameters including the surface 

roughness. 

6. There is intense mixing of fluid particles in turbulent region; therefore, heat transfer is 

more in turbulent flow as compared in laminar flow. This is the reason why special 

efforts are made in the design of heat exchangers to increase turbulence. However, one 

has to pay a premium of increased pressure drop i.e. increased power to pump the fluid 

through the heat exchanger. 

7. Turbulent boundary layer itself is made of three layers: a very thin layer called laminar 

sub-layer', then, a "buffer layer' and, finally, the 'turbulent layer', 

8. Thickness of the boundary layer,  , increases along the flow direction;   is related to 

the Reynolds number as follows: in the laminar flow region: 

     
   

(   )   
 

and for turbulent flow region: 

      
       

(   )   
 

where     is the Reynolds number at position x from the leading edge. 

 

6.3 Thermal Boundary Layer 

When the temperature of a fluid flowing on a surface is different from that of the surface, a 

'thermal boundary layer' develops on the surface, in a manner similar to the development of the 

velocity boundary layer. Let us illustrate the development of the thermal boundary layer with 

reference to a flat plate. See Fig. 2. 

Consider a fluid at an uniform velocity of U and a uniform temperature of Ta approach the 

leading edge of a thin, flat plate as shown. Let the flat plate be at a uniform temperature of Ts. 

Let Ta > Ts. Then, the first layer that comes in contact with the surface will adhere to the surface 

(no slip condition) and reach thermal equilibrium with the surface and attain a temperature of 

Ts Then, the fluid particles in this layer will exchange energy with the particles in the adjoining 

layer, which in turn will exchange energy with the subsequent layer, and so on. Thus a 

temperature profile will develop in the flow field and the temperature will vary from Ts at the  
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surface to Ta at the free stream. The region in which the temperature variation in the y-direction 

is significant is known as 'thermal boundary layer'. Thickness of the thermal boundary Layer at 

any location is defined as that distance from the plate surface in the y-direction where the 

temperature difference between the fluid and the surface has reached 99% of the maximum 

possible temperature difference of (Ta - Ts). 

 

velocity profile in the hydrodynamic boundary layer depends on the viscosity of the fluid, 

whereas temperature profile in the thermal boundary layer depends on the viscosity, specific 

heat and thermal conductivity of the fluid, in addition to the velocity. 

Relative magnitudes of the thicknesses of the hydrodynamic boundary layer ( ) and thermal 

boundary layer (  ) depend on the dimensionless parameter 'Prandtl number' defined as: 

           (                                 ) (                             ) 

Or, 

   
 

 
 

    

 
 

Where   is dynamic viscosity,    is the specific heat and k is the thermal conductivity of the 

fluid. 

Also,   is kinematic viscosity =  , and   is the thermal diffusivity. 

Prandtl number is of the order of 1 for gases, less than 0.01 for liquid metals and more than 

1000 for heavy oils.  

Regarding the relative growth of velocity and thermal boundary layers in a fluid, we may note 

the following: 

1. For gases, where Pr = (  ⁄ ) is of the order of 1, we see that the momentum and heat 

dissipate almost at the same rate i.e. thicknesses of the hydrodynamic and thermal 

boundary layers are of the same order; 

2. For liquid metals since Pr << 1, it means that heat diffuses at a much higher rate than the 

momentum for liquid metals i.e. the thermal boundary layer is much thicker than 

hydrodynamic boundary layer for liquid metals (See Fig 3,a), and, 

3. For heavy oils (Pr >> 1), momentum diffuses at a faster rate than heat through the 

medium and this is evident from Fig. (3,b); thus, the thermal boundary layer is much 

thinner than hydrodynamic boundary layer. 
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For laminar conditions, thickness of thermal boundary layer is related to hydrodynamic 

boundary layer, approximately as follows: 
  

  
 

 

       

 

6.4 Differential Equations for the Boundary Layer 

In convection studies, since there is a fluid flow, we are interested in the shear stress and the 

friction coefficient; to determine these we need the velocity gradient at the surface. Similarly, 

to determine the convection coefficient; we need the temperature gradient at the surface. To 

determine the velocity gradient at the surface, we apply the  equation of conservation of 

momentum (in conjunction with the equation of conservation of mass) to a differential volume 

element in the boundary layer. And, to determine the temperature gradient at the surface, we 

apply the equation of conservation of energy to a differential volume element in the boundary 

layer We start with the application of equation for conservation of mass: 

1. Conservation of Mass-The Continuity Equation for The Boundary Layer 

Consider a differential control volume, of section (     ) and unit depth, within the boundary 

layer, as shown in fig. 4 

 

  

  
 

  

  
         

Where: u and v are the velocity components in the X and Y-directions. 
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Eq. a is known as 'continuity equation' for two-dimensional, steady flow of an incompressible 

fluid. 

 

2. Conservation of Momentum Equation for The Boundary Layer 

This is obtained by the application of Newton's second law of motion to the differential 

element, which states that the net force on the element in the X-direction is equal to the net 

momentum from the control volume in the X-direction. Fig. 5 shows the momentum fluxes and 

forces acting on the differential control volume. 

 

  (
  

  
)    (

  

  
)    (

   

   
)       

Eq. b is known as 'conservation of momentum equation' for two-dimensional, steady flow of an 

incompressible fluid, with negligible pressure variation in the X-direction 

 

 

3. Conservation of Energy Equation for The Boundary Layer 

  (
  

  
)    (

  

  
)    (

   

   
)       

This is the energy equation for a two-dimensional, steady incompressible flow, when the 

viscous dissipation neglected, i.e. for very low velocities of flow. 

Observe the similarity between Eq. b for momentum balance and the Eq. c for energy balance. 

In Eq. b,       ⁄   = kinematic viscosity, also known as momentum diffusivity. In Eq. c, 

      ⁄   is the diffusivity of heat. Their ratio is known as Prandtl number and is equal to: 

      (  ⁄ ) (    ⁄ )       ⁄⁄⁄  
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 If     , then Pr = 1 and the momentum and energy equations are identical; thus, Prandtl 

number controls the relation between the velocity and temperature distributions. 

 

   

6.4.1 Exact Solutions of Boundary Layer Equations 

Recollect that the equations of continuity, momentum and energy for the boundary layer on a 

flat plate are given, respectively, by: 

  

  
 

  

  
         

  (
  

  
)    (

  

  
)    (

   

   
)       

  (
  

  
)    (

  

  
)    (

   

   
)       

Now, solving the momentum equation in conjunction with the continuity equation gives the 

velocity distribution, boundary layer thickness and shear stress (or friction force) at the surface. 

Exact mathematical solution is rather complex; its outline is given below, for the laminar 

boundary layer (        ): 

1-  

  
   

√   

 

Where:   is boundary layer thickness. 

                        x is the distance from the leading edge. 

                             
   

 
 local value of Reynolds number. 

2-  

          
 

 
 √    

  : is the wall shear stress 

    
 

(
   

 )
 

     

√   

 

                 is the local value of the friction coefficient (or the drag coefficient) 

          
     

√   
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                 is the average friction coefficient (or the drag coefficient) 

3- The relationship between the thickness of hydrodynamic and thermal boundary layer: 

  

  
 

 

      
 

   
   

√           
 

 

4-  

    
   

 
       √            

          √            

        
 

 
 √            

             
 

 
 √            

Where     and     is the local and average Nusselt number,   and    is the local and 

average heat transfer coefficient. 

In the above equations, properties of the fluid are evaluated at the mean temperature between 

the free temperature and the plate surface temperature i.e. at the 'film temperature' given by: 

   

 
     

 
 

 

6.5 Relation between the fluid friction and heat transfer coefficient in laminar flow for a 

flat plate. 

Recollect that the average Nusselt number for laminar flow over a flat plate is given by: 

          √            

This can be rewritten as: 

   

      
          

  
 
      

 
  

Or: 

             
  

 
      

 
  

Where     is dimensionless number known as "Stanton number",     
  

      
 

We can write: 

      
 
           

 
 
        

We already know that: 

    
     

√   

 

Or: 

   

 
          

 
 
       

Comparing Eqs. A and b, we can write: 
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This relation is known as 'Colburn analogy' and it gives a simple relation between the heat 

transfer coefficient and the friction coefficient.  

Note the important significance of this analogy: just by knowing the friction coefficient, one 

can predict the heat transfer coefficient for that situation; and conducting experiments to 

determine friction coefficient is many times, practically much easier than conducting 

experiments to determine heat transfer coefficients. 

 

Dimensionless Form 

In a situation of forced convection the significant parameters are                   . Using 

Buckingham's Pi-Theorem, we obtain the following three dimensionless numbers: 

a) Nusselts number. .    
   

 
 

b) Reynolds number.     
   

 
 

c) Prandtl number.    
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EMPIRICAL AND PRACTICAL RELATIONS FOR FORCED-CONVECTION HEAT 

TRANSFER 

 

it is not always possible to obtain analytical solutions to convection problems, and the 

individual is forced to resort to experimental methods to obtain design information, as well as 

to secure the more elusive data that increase the physical understanding of the heat-transfer 

processes. Results of experimental data are usually expressed in the form of either empirical 

formulas or graphical charts so that they may be utilized with a maximum of generality 

 

6.6 Empirical And Practical Relations For External Flow 

 

6.6.1 Turbulent Boundary Layer Flow Over A Flat Plate i.e. (Re > 5 * 10
5
) 

   
   

 
          

           

 

6.6.2 Flow across Tube Banks 

Because many heat-exchanger arrangements involve multiple rows of tubes, the heat transfer 

characteristics for tube banks are of important practical interest. The heat-transfer 

characteristics of staggered and in-line tube see fig (7) banks were studied by Zukauskas, and 

on the basis of a correlation of the results of various investigators, he was able to represent data 

in the form of the equation below. 

          
         (

  

   
)
    

 

where all properties except Prw are evaluated at T∞ and the values of the constants (C, n) are 

given in Table (1) for greater than 20 rows of tubes. For less than 20 rows in the direction of 

flow the correction factor in Table (2) should be applied. This equation is applicable for 

0.7<Pr<500 and 10<Red, max<10
6
. For gases the Prandtl number ratio has little influence and is 

dropped. note that the Reynolds number is based on the maximum velocity in the tube bundle. 

that is, the velocity through the minimum-flow area. This area will depend on the geometric 

tube arrangement. 

 

Determination of maximum flow velocity 

For flows normal to in-line tube banks the maximum flow velocity will occur through the 

minimum frontal area (Sn −d) see fig (7) presented to the incoming free stream velocity u∞. 

Thus:  

umax =u∞[Sn/(Sn −d)]                           (in-line arrangement) 

For the staggered arrangement the same maximum flow velocity will occur through  the 

minimum frontal area (Sn −d), or this may not be the case for close spacing tube bank, as when 

Sp is small. For the staggered case, the flow enters the tube bank through the area Sn−d and then 

splits into the two areas [(Sn/2)
2
 +S

2
p]

1/2
 −d. If the sum of these two areas is less than Sn −d, then 

they will represent the minimum flow area and the maximum velocity in the tube bank will be: 

      
  (    )

 ,(    )     
 -     
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where, again, u∞ is the free-stream velocity entering the tube bank. 

 

Pressure drop for flow of gases over a bank of tubes may be calculated with the following 

equation expressed in Pascal: 

   
      

  

 
 (

  

  
)
    

 

Gmax =mass velocity at minimum flow area, kg/m
2
.s 

ρ=density evaluated at free-stream conditions, kg/m
3
 

N =number of transverse rows 

μb =average free-stream viscosity, N.s/m
2
 

The empirical friction factor   is given by Jakob as 

  [     
     

,(    )  ⁄ -    
]      

                                                       

   *      
    (    )

,(    )  ⁄ -             
+      
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*The reader should keep in mind that these relations correlate experimental data with an 

uncertainty of about (-,+)25 percent. 

 

 

6.7 Empirical And Practical Relations For Internal Flow 

 

6.7.1 Flow Inside Tubes  

Circular tubes are the most commonly used geometry for cooling and heating applications, in 

industry. Often, tubes of other geometries such as square or rectangle are also used. We are 

interested in heat transfer in such cases; pressure drop occurring during flow is also of interest 

since it has a direct bearing on the pumping power required to cause the flow. 

Observe the major difference between the external flows just studied and the internal flow 

through pipes: in the external flow, say over a flat plate, there was a free surface of fluid and the 

boundary layer was free to grow; however, in a pipe flow, the flow is confined within the pipe 

and the boundary layer growth is limited to grow only up to the centre of the pipe. 

 

Hydrodynamic and Thermal Boundary Layers for Flow in a Tube 

consider a fluid entering into a circular pipe, with a uniform velocity U See Fig.(8a). Fluid layer 

coming in contact with the pipe surface comes to a complete halt and the adjacent layers slow 

down gradually due to viscosity effects. Since the total mass flow in a section must remain 

constant, velocity in the central portion increases. As a result a 'velocity boundary layer' 

develops along the pipe. Thickness of the velocity boundary layer increases along the flow 

length until the entire pipe is filled up with the boundary layer, as shown. 'Hydrodynamic entry 

length (Lh)' is the distance from the entry point to the point where the boundary layer has 

developed up to the centre. In the region beyond the hydrodynamic entry length, the velocity 

profile is fully developed and remains unchanged; this is the 'hydrodynamically developed 

region'.  

Similarly, when a fluid at an uniform temperature enters a pipe whose wall is at different 

temperature, a 'thermal boundary layer' develops along the pipe. Thickness of thermal 

boundary layer also increases along the flow length till the boundary layer reaches the centre of 

the pipe. 'Thermal entry length (Lt)' is the distance from the entry to the point where the thermal 

boundary layer has reached the centre, and is shown in the Fig. (8b). Beyond this point, along 

the length, we have the 'fully developed flow' i.e. the flow is both hydrodynamically and 

thermally fully developed. 
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Relative growth of hydrodynamic and thermal boundary layers is controlled by the 

dimensionless Prandtl number. For gases, Pr =1, and the hydrodynamic and thermal boundary 

layers essentially coincide; for oils Pr >> 1 and the hydrodynamic boundary layer outgrows the 

thermal boundary layer, i.e. hydrodynamic entry smaller for oils. For fluids with Pr << 1, such 

as liquid metals, thermal boundary layer outgrows the hydrodynamic boundary layer and 

consequently, the thermal entry length is shorter than the hydrodynamic entry. 

Reynolds number is the dimensionless number that characterizes the flow inside a tube as 

laminar or turbulent. Reynolds number is defined as: 

     (    )   
where Um is the mean velocity in the pipe, and v is the kinematic viscosity of the fluid. Flow 

regimes are defined as follows, depending upon the Reynolds number: 

                                   

                                     
Since the velocity profile remains essentially constant in the hydrodynamically developed 

region the friction factor and the shear stress remain constant in the hydrodynamically 

developed region By a similar argument, heat transfer coefficient also remains constant in the 

thermally developed region. 

 

Correlation for fully developed, steady, laminar flow (i.e. Re < 2300) 

1- Pressure drop  

  

 
 

 

 

   
 

 
 

 

Where         ,                
  

   
 
 

 

 

2-  

    
   

 
     [

     

  ⁄
]
     

 

In the above equation 

a) property values are taken at mean bulk temperature. If the outlet temperature is not 

specified, iterative working will be required 

b) it is for short pipe, constant wall temperature 
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3-  

        
      .

 
 /       

         0.
 
 /       1

 

        for short pipe, constant heat flux 

        for long pipe with constant heat flux, average Nusselt number approaches the value 

4.36  

 

4-  For non-circular Cross-sections. Nusselts number and friction factor for fully 

developed laminar flow inside pipes of non-circular cross-sections are given in Table 

(3). Here, Reynolds number and Nusselts number are based on the hydraulic diameter 

   
   

 
 

A is the area of cross-section and P is the wetted perimeter. 

Flow through an annulus    (     ) 

 

 

Correlation for fully developed, steady, turbulent flow (i.e. Re > 2300) 

 

1- Pressure drop  

  

 
 

 

 

   
 

 
 

Friction factor   for smooth pipes is given by the following empirical relations: 

                                                    (for  2 * 10
4
 < Re < 8 x 10

4
) 

                                                     (for   10
4
 < Re < 10

5
) 

   (       (  )        )                 (                     ) 

Friction factor   for rough pipes: 
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0  .
 

     /  
    
     1

  

  is 'roughness height'  

2- Design equations  

more popularly used design equation for fully developed (L/D > 60), turbulent flow in 

pipes is the 'Dittus-Boelter equation', given below: 

                                     (                        ) 

where n = 0.4 for heating and n = 0.3 for cooling of the fluid flowing through the pipe. 

Here, fluid properties evaluated at the bulk mean temperature of fluid i.e. at     
 (      )   , where Ti is the temperature of fluid at pipe inlet and Te is the 

temperature of fluid at pipe outlet. 

If the temperature difference, (Ts - Tb) is significant, then variations in physical 

properties have to be taken into account, and in such situations correlation of Sieder and 

Tate  is recommended: 

                     (
  

  
)
    

        (                             ) 

3- For flow through an annulus area use    (     ) instead of D 

And                            (Re based on hydraulic Dh diameter)                     

 
 

6.7.3 Helically Coiled Tubes 

Coiled tubes are used to enhance the heat transfer coefficient and also to accommodate a larger 

heat exchange surface in a given volume. Heat transfer in a coiled tube is more compared to 

that in a straight tube due to the contribution of secondary vortices formed as a result of 

centrifugal forces. 

Here, we define a new dimensionless number, called 'Dean number, Dn' as follows: 

     (
 

  
)
   

 

Where D is the diameter of the tube and dc is the diameter of the coil. 

For laminar flow, following equations are recommended, depending upon the Dean number: 

      (  
    )

 
                        (       ) 

      (   
    )

 
             (             ) 

      (   
          ) (

 

  
)
     

            (              ) 

All the above three Eqs are valid for 10 < Pr < 600. 

 Also, for coiled tubes, there is not much difference in values of average Nusselt 

numbers whether the surface temperature is kept constant or the surface heat flux is 

maintained constant. 

 For simplicity take the critical Reynolds number for a curved pipe as the same that for a 

straight pipe 

For turbulent flow, in forced convection in helically coiled tubes, Hausen has proposed the 

following correlation: 
         

          
   (

  

      
) (

 

  
) 
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CH. 6 APPENDIX  

Basic Equation For Forced Convection 

Geometry, details Correlation Restrictions 
Flat plate, laminar flow:           

Hydrodynamic boundary 

layer thickness 
  

   

√   

 
         

local friction coefficient 
    

 

(
   

 )
 

     

√   

 
         

Average friction coefficient 
          

     

√   

 
         

Local Nusselt number           √                     

Average Nusselt number           √                     

Flat plate, turbulent flow:           

Nusselt number             
                    

Flow across Tube Banks:   

Nusselt number 
          

         (
  

   
)
    

 

 

1- (C, n) are given in Table(1) 

2-For less than 20 rows the 

correction factor in Table (2) 

should be applied 

Maximum velocity umax =u∞[Sn/(Sn −d)]   for in-line arrangement  

      
  (    )

 ,(    )     
 -     

               

Pressure drop 
   

      
  

 
 (

  

  
)
    

 

             
N =number of transverse rows 

 

The friction factor 
  [     

     

,(    )  ⁄ -    
]      

      

for in-line arrangement 

 

  *      
    (    )

,(    )  ⁄ -             
+      

      

              

Flow Inside Tubes, 

laminar flow: 

  

Nusselt number 
    

   

 
     [

     

  ⁄
]
     

 
Re < 2300 

Pressure drop 

 
  

 
 

 

 

   
 

 
 

 

The friction factor 
  

  

   
 
 

 
Re < 2300 

Flow Inside Tubes, 

turbulent flow: 

 Re > 2300 

Nusselt number                      
n = 0.4 for heating 

Re > 2300 
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n = 0.3 for cooling of the fluid 

Pressure drop 

 
  

 
 

 

 

   
 

 
 

 

The friction factor                   

                 

   (       (  )        )   

(                  ) 

(for  2 * 10
4
 < Re < 8 x 

10
4
) 

(for   10
4
 < Re < 10

5
 

Friction factor for rough 

pipes   
     

0  .
 

     /  
    
     1

  

  is 'roughness height' 

 

Friction factor for flow 

through an annulus area 
                          

(Re based on hydraulic Dh diameter) 

 

Helically Coiled Tubes, 

laminar flow: 

 Re < 2300 

Nusselt number 
      (  

    )
 
  

      (   
    )

 
  

      (   
          ) (

 

  
)
     

 

 

D is the diameter of the tube. 

dc is the diameter of the coil. 

(       ) 

(             ) 

(              ) 

 

 

 

Where      .
 

  
/
   

 

 

Helically Coiled Tubes, 

turbulent flow: 

 Re > 2300 

Nusselt number          

          
   (

  

      
) (

 

  
) 

Re > 2300 
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CHAPTER SEVEN 
NATURAL CONVECTION;  

Summery and Empirical Relations 
Introduction 

In the previous chapter, we studied heat transfer by forced convection, wherein fluid movement 

was caused by an external agency such as a pump or fan. In this chapter, we shall study about 

heat transfer in 'Natural or free convection'; here, fluid movement is caused because of density 

differences in the fluid due to temperature differences. Under the influence of gravity, density 

differences cause a 'buoyancy force' which in turn, causes the fluid 

circulation by 'convection currents'. 

 

Physical Mechanism of Natural Convection 

Consider the familiar example of a heated vertical plate 

kept hanging in calm air. Let the temperature of the heated 

surface be Ts and that of the surrounding air, Ta. A layer of 

air in the immediate vicinity of the plate will get heated by 

conduction; density of this heated air layer decreases. As a 

result, the heated layer rises up and the cold air from the 

surroundings moves in to take its place. This layer, in turn, 

gets heated up, moves up and is again replaced by cooler 

air etc. Thus, convection currents are set up causing the 

heat to be carried away from the hot surface. This situation 

is shown in Fig.  

During the temperature induced flow, a boundary layer is 

set up along the length of the plate as shown. With the 

x-axis taken along the vertical length of plate, the velocity 

and temperature profiles are shown in the Fig. As far as the 

velocity profile is concerned, at the plate surface, the 

fluid velocity is zero due to 'no slip' condition; then, the 

velocity increases to a maximum value and then, drops 

to zero at the outer edge of the boundary layer since the 

surrounding air is assumed to be stationary. Note the 

difference in this velocity profile as compared to that in the 

case of forced convection. The boundary layer is 

laminar for some distance along the length, and then 

depending on the fluid properties and the driving 

temperature difference between the wall and the ambient, 

the boundary layer becomes turbulent. 

 

Dimensionless numbers of natural convection 

1- Gr = Grashoff number: plays the same role in natural convection as that of Reynolds 

number in forced convection. Physical significance of Grashoff number is that it 

represents the ratio of buoyancy force to the viscous force acting on the fluid, i.e. 

   
              

             
 

      

    
 

        

  
 

   
    (     )   

 

  
 

Where: 

g = acceleration due to gravity, m/s
2
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  = coefficient of volume expansion, 1/K (  = l/T for ideal gases only, T in Kelvin) 

Ts = temperature of the surface, deg. C 

Ta = temperature of the fluid at sufficient distance from the surface, deg. C 

Lc = characteristic length of the geometry, m 

v = kinematic viscosity of fluid,    s 

 

2- Prandtl number (Pr) = 
    

 
 

3- Rayleigh number, (Ra): Is the Product of Grashoff number and Prandtl number, i.e. 

     (     ). It is the criterion to determine if the flow is laminar or turbulent, in 

natural convection. For example, in the case of heat transfer by natural convection for 

vertical plates, for Ra > about 10
9
, the flow is turbulent and for Ra < 10

9
, the flow is 

laminar. 

4- Nusselt number (Nu) = C.Ra
m

 

Where: 

Ra = (Gr.Pr) = Rayleigh number and 'C and 'm' are constants determined from 

experiments, (depending on the convection case). 

By determining Nu, we determine h, the heat transfer coefficient in natural convection. 

(   
    

 
 ) 

Then, the heat transfer rate for natural convection is given bv Newton's law of cooling, 

i.e. 

            (     ) 
 

Empirical Relations for Natural Convection over Surfaces and Enclosures 

In solving natural convection heat transfer problems, we rely more on empirical relation 

than on analytical relations. This is due to the fact that analytical relations are rather difficult to 

obtain also; analytical relations generally give lower values of heat transfer coefficients as 

compared to empirical relations. Also, because of the very low velocities involved in 

natural convection, it becomes difficult to take into account all factors in the analytical 

methods. 

We shall present below empirical relations for natural convection from several types of 

surfaces and enclosures of practical importance. 
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 Geometry Lc 
Conditio

n 

Range of 

Ra 
Nu 

1- 

 

L 

Constant 

(T) 

        

         

 

            ⁄  

            ⁄  

 

2- 

 

L 

Constant 

(T) 

Use vertical plate equations. Replace (g) by (g 

cos ) for Ra > 10
9
 

3- 

 

L 

Constant 

(T) 

A vertical cylinder can be treated as a vertical 

plate, if the cylinder diameter is large. For 

simplicity we will consider all the problem as 

large diamere 

4- 

 

     ⁄  
 

Where: 

A= surface 

area 

P = 

perimeter 

Constant 

(T) 

        

         

         

 

 

 

 

 

 

 

            ⁄  

            ⁄  

            ⁄  

 

 

 

 

 

 

 

5- 

 

     ⁄  
 

Where: 

A= surface 

area 

P = 

perimeter 

Constant 

(Q) 

       

     

      

         

 

 

 

 

 

 

 

            ⁄  

            ⁄  

              

 

 

 

 

 

 

 

 

 

6- 

 

D 

Constant 

(T) 

          

 

  

 

[
 
 
 
 
 

    
        

 
 

[  .
     
  

/

 
  

 

]

   

]
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Example: Consider a flat-plate solar collector placed horizontally on the flat roof of a 

house. The collector is 1.5 m wide and 6 m long, and the average temperature of the 

exposed surface of the collector is 42°C. Determine the rate of heat loss from the 

collector by natural convection during a calm day when the ambient air temperature is 

8°C. 
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 Example: 
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BOILING AND CONDENSATION 
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8.2.1    Film condensation and flow regimes 
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CHAPTER EIGHT 
BOILING AND CONDENSATION 

 

8.1 Introduction 
In the previous chapter we studied convection heat transfer, i.e. heat transfer with fluid motion 

and the fluid involved was homogeneous and in single phase. But, there are many important 

practical cases which involve heat transfer with a change of phase of the fluid, e.g. boiling 

where the liquid changes to vapour and condensation where the vapour condenses into a liquid, 

Boiling and condensation are classified under convection since there is motion of the fluid 

during heat transfer in these processes. 

 

 Some of the applications of boiling and condensation are: 

1. Evaporators and condensers of a vapour compression refrigerating system 

2. Boilers and condensers of a steam power plant 

3. Reboilers and condensers of distillation columns of cryogenic and petrochemical plants 

4. Cooling of nuclear reactors and rocket motors 

5. Process heating and cooling, etc 

 

Unique features of boiling and condensation are: 

1. heat transfer, practically at a constant temperature, because of change of phase 

2. latent heat and surface tension come into play in addition to buoyancy driven flow 

effects, resulting in larger heat transfer rates and heat transfer coefficients compared to 

the usual free or forced convection 

3. high heat transfer rates with small temperature difference. 

 

Dimensionless Parameters in Boiling and Condensation 

It is difficult to obtain governing equations for boiling and condensation by applying the usual 

conservation law. However, dimensional analysis has been successfully applied with the use of 

Buckingham   theorem. Heat transfer coefficient in either boiling or condensation process 

may be reasonably assumed to depend on; 

 The temperature difference    between the surface temperature Ts and the saturation 

temperature Tsat of the fluid. 

 Body force arising out of the density difference between the liquid and vapour phases = 
,   (     )-. 

 Latent heat hfg. 

 Surface tension  . 

 Characteristic length L. 

 Thermo-physical properties of the liquid or vapour;             . 

By applying Buckingham   theorem one can be get the functional relationship between the 

various dimensionless groups. 
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8.2 CONDENSATION HEAT TRANSFER 

Condensation heat transfer has important practical applications, e.g. in thermal power plants, 

chemical plant, refrigeration and air-conditioning systems. 

Whenever a saturated vapour at a temperature Tsat is brought in contact with a surface 

maintained at temperature Ts such that Ts is less than Tsat vapours condense on the surface. So, 

condensation is the 'reverse' of boiling process.  

While condensing, the vapours will release the latent heat of vaporisation. 

The vapours may condense on the surface in one of the two modes: 'film-wise condensation' or 

'drop-wise condensation'. 

 

In film-wise condensation, vapours condense on the surface and drip down forming a 

continuous liquid film on the surface. Thickness of the condensate film increases as it travels 

down towards the lower (or trailing) end of the plate. During the condensation process, latent 

heat of vaporisation is released by the vapours. For further condensation to occur, the released 

latent heat has to be conducted through this liquid film to the cooled surface at temperature Ts. 

However, the liquid film offers resistance to the flow of heat and this resistance increases as the 

thickness of the film grows. Film-wise condensation occurs on surfaces which tend to get 

'wetted'. 

 

In drop-wise condensation, the vapours condense on the surface on drops, which drip down 

the surface. A continuous film of liquid is not formed on the surface. Thus, more of the base 

area at temperature Ts is always exposed to the vapours. Therefore, heat transfer rate is higher 

(up to ten times) in drop-wise condensation as compared to the value in film-wise 

condensation. Generally, drop-wise condensation occurs on smooth surfaces which do not get 

'wetted'. 

While drop-wise condensation would appear to be the preferred mode in practice, it is difficult 

to maintain this mode since, with time, all surfaces tend to get wetted. 

Attempts to achieve drop-wise condensation have been made either by coating the surface with 

some suitable material or by adding some additives to the vapours; but, commercially, these 

techniques have not yet become viable. 
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8.2.1Film Condensation and Flow Regimes 

Consider film condensation of a vapour at saturation temperature Tsat on the surface of a cooled 

vertical plate, maintained at a temperature Ts (< Tsat)  

Vapour condenses on the top of the plate and flows down as a film. Thickness of the film ( ) is 

zero at the top of the plate (i.e. at x = 0 in the coordinate system shown in fig.) and increases as 

we travel down the plate (i.e. as x increases) due to additional condensation of vapour.  

Initially, the liquid film flow is laminar; after some distance it will become wavy and later, it 

may even turn turbulent. These different flow regimes are identified according to a 'film 

Reynolds number', defined as follows: 

    
          

  
 

 
             

     
 

              

   
 

    

     
 

Where  

       ⁄          Hydraulic diameter of condensate flow, ( ) 

P = wetted perimeter of condensate, ( ) 

Ac = P. = area of cross section of flow at the lowest part of flow, ( ) 

   = density of liquid,       

   = viscosity of liquid, kg/ms 

VL = average velocity of condensate at the lowest part of flow, m/s 

           = m = mass flow rate of condensate at the lowest part of flow, kg/s. 

 

For the common geometries of a vertical plate, vertical cylinder and a horizontal cylinder, 

hydraulic diameter Dh is equal to 4 times the thickness of the condensate,  , at the location 

where the hydraulic diameter is to be evaluated 

 

If we denote (   ) by   , we can write for the vertical plate: 

    
     

   
 

Another point to be noted is regarding the latent heat of vaporisation (hfg) released during 

condensation: Vapour at a temperature of Tsat comes in contact with the plate at a temperature 

of Ts (<Tsat) and condenses, if the condensed liquid is, further sub-cooled to a temperature 
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somewhere in between Ts and Tsat, thus releasing some more heat. Rohsenow (1956) suggested 

that this sub-cooling of the liquid can be taken into account by replacing hfg by a 'modified 

latent heat of vaporisation    
 

 defined as: 

   
     

           (       ) 

Where,    , is the specific heat of liquid at the average film temperature. 

Similarly, if a superheated vapour at a temperature, Tv, enters a condenser and condenses, the 

superheated vapour has to be cooled to Tsat first, and then condensed at Tsat and then sub-cooled 

to some temperature between Ts and Tsat Then, modified latent heat of vaporisation is: 

   
     

           (       )      (       ) 

 

Where,     is the specific heat of vapour at the average temperature of (Tv + Tsat)/2. 

Then, rate of heat transfer in condensation becomes: 

             (       )        
 

 

Where, A is the surface area on which condensation occurs. 

Then, we can write: 

    
          

 

          
  

        (       )
 

          
  

Now, different flow regimes are identified according to the value 

of     as follows. 

   < 30 (Liquid film is smooth and wave-free, i.e. fully laminar.) 

450 <     < 1800 (Liquid film has ripples or waves and the flow 

is wavy—laminar.) 

   > 1800 (Liquid film is fully turbulent.) 

Heat transfer correlations vary depending upon the flow regime. 

 

 

 

8.2.2 Nusselt's Theory for Laminar Film Condensation on Vertical Plates 

Nusselt developed his theory tor laminar film condensation on vertical plates analytically in 

1916. 

Consider a vertical plate maintained at a temperature Ts and exposed to a saturated vapour at a 

temperature of Tsat (Ts < Tsat). See Fig. 1. Let the height of the plate be L and the breadth b. 

Coordinate system is chosen such that x-coordinate is to the downward direction, i.e. in the 

direction of flow of condensate and y-coordinate is towards the right, as shown. Condensation 

occurs on the plate and the condensate moves down from top to bottom. Thickness of 

condensate is zero at the top (i.e. at x = 0) and increases in the flow direction, due to additional 

condensation of vapour. Since the liquid film offers resistance to the flow of heat from the 

vapour to the cold surface, this also means that resistance to heat transfer is minimum at the top 

of the plate and the resistance increases as one moves down in the flow direction. 

      Nusselt made the following simplifying assumptions in his analysis: 

1. Flow of liquid film is laminar 

2. Heat flow is mainly by conduction through the liquid film 

3. Temperature is Ts at the liquid-plate interface and Tsat at the liquid-vapour interface and 

the temperature gradient between them is linear 

4. Velocity of vapour is low, i.e. there is no viscous shear force at the liquid-vapour 

interface 

5. Properties of the liquid are constant. 
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Making the force balance: 

              

                                               

       (   ) (     )       
  

  
  (     )         (   ) (     ) 

  

  
 

   (     ) (   )

  
 

Integrating from y = 0 (i.e. the plate surface) to y = y, and remembering that at y = 0, u = 0, and 

at y = y, u = u(y), we get: 

 ( )  
   (     ) [     

  

 ]

  
 

The mean flow velocity of the liquid at a section is given by: 

   
 

 
 ∫   

 

 

 

   
 

 
 ∫  

   (     ) [     
  

 ]

  
  

 

 

 

   
   (     )   

     
 

Mass flow rate: 

Mass flow rate of condensate through any x-position is given by: 
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      (    )   
   (     )   

     
 

  
   (     )          

     
                         

Note that mass flow rate is a function of position (x), since the film thickness   is function of x. 

As we proceed from position x to (x + dx), film thickness increases from   to (  +   ), and 

there is additional mass 'dm' condensed. This additional mass 'dm' condensed between x and (x 

+ dx) is obtained by differentiating Eq. 2 

   *
   (     )          

    
+  

Heat flow rate: 

While condensing 'dm' amount of liquid, certain amount of latent heat of vaporisation is 

released; this is equal to: 

           

 

        *
   (     )          

    
+                

But, as per the assumption, heat flow through the liquid film is by pure conduction, with linear 

temperature gradient. Therefore, we can write: 

   
    (     )

 
  (       )                   

From Eq. 3 and 4: 

     *
   (     )          

   
+   

    (     )

 
  (       ) 

   
      

   (     )        
  (       )     

Integrating the above equation with the boundary condition that  = 0 at x = 0, we get: 

 ( )  *
           (       )   

   (     )        
+

 
 

               

Eq. 5 gives the liquid film thickness as a function of position x. 

 

Heat transfer coefficient: 

For the heat flow through the liquid film, we have: 

   
    (     )

 
  (       ) 

Also, by Newton's law of cooling: 

       (     ) (       ) 

where,    is the local heat transfer coefficient 

       From the above two relations, we get: 
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    (     )

 
  (       )      (     ) (       ) 

   
  

 
 

Substituting the value of   from Eq. 5 in the above Eq. 

   *
   (     )    

         

          (       )
+

 
 

                  

Obviously, rate of condensation heat transfer is higher at the upper end as compared to that at 

the lower end. 

Average value of heat transfer coefficient over the entire height of the plate is of interest to 

calculate the total heat transfer rate. This is obtained by integrating Eq. 6 over the height L: 

     
 

 
  ∫     

 

 

 

     
 

 
     

 

Substituting for hx from Eq. 6 we get: 

     
 

 
  *

   (     )    
         

          (       )
+

 
 

 

            *
   (     )    

         

       (       )
+

 
 

             

Eq. 7 is Nusselt's equation for average heat transfer coefficient for condensation on a vertical 

plate. It is observed that in practice, experimental value of average heat transfer coefficient is 

about 20% higher than  that given by Nusselt's Eq. 7. So, McAdams suggested to use a 

coefficient of 1.13 instead of 0.943 in Eq. 7 

      Nusselts equation under predicts the value of h, basically because: 

a) it does not take into account non-linear temperature profile in the liquid film, and 

b) it does not take into account the sub-cooling of the liquid film. 

These effects can be accounted for by replacing    
  in Eq. 7 by    

  given by the following 

Eq.  

   
     

           (       ) 

 

Then, we have, for average heat transfer coefficient for laminar film condensation on a vertical 

plate: 

            *
   (     )    

         
 

       (       )
+

 
 

       
 

   
                            ( ) 
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8.2.3 Film Condensation on Inclined Plates, Vertical Tubes, Horizontal Tubes and 

Horizontal Tube Banks 

1- Inclined plates: 

Eq. 8 for laminar condensation on vertical plates can also be used 

for inclined plates. If the plate is inclined at an angle of   to the 

vertical, (    60 deg.), replacing   by      ( ) in Eq. 8 gives 

satisfactory results for laminar condensation on the upper surface 

of the inclined plate, i.e. 

                 *
   (     )    

        ( )     
 

       (       )
+

 
 

           

 

 

 

2- Vertical tubes: 

Eq. 8 for laminar condensation on vertical plates can also be used 

to determine heat transfer coefficient for laminar condensation on 

the outer or inner surface of a vertical tube, if the tube diameter is 

large compared to the thickness of the liquid film, i.e. if D >>   

 

 

 

 

3- Horizontal tube-laminar film condensation: 

For laminar film condensation on horizontal tubes and spheres, Nusselt type 

of analysis gives relations similar to Eq. 8 except that L is replaced by 

diameter D and the value of the numerical constant is different. We get 

               *
   (     )    

         
 

       (       )
+

 
 

            

It is interesting to compare the laminar condensation on vertical and 

horizontal tubes. From Eqs. 8 and 10 we can write: 

     

       
 

     

     
  (

 

 
)

 
 

       (
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For       to be equal to         we should have: 

  (     )     

        

4- Average heat transfer coefficient for film condensation of horizontal 

tubes on a matrix containing N tubes is obtained by substituting (N.D) 

in place of D in Eq. 10 for a single horizontal tube, i.e. 

               *
   (     )    

         
 

         (       )
+
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8.3 BOILING AND EVAPORATION 

'Boiling' occurs at the solid-liquid interface when the solid surface is at a temperature Ts, 

sufficiently above the saturation temperature Tsat, of the liquid at that pressure. In contrast, 

'evaporation' occurs at the liquid-vapour interface when the vapour pressure above the liquid is 

less than the saturation pressure of the liquid at the given 

temperature. Unique feature of the boiling phenomenon is the production of vapour bubbles at 

the solid-liquid interface causing intense mixing. 

 

8.3.1 Boiling Modes 

Boiling is generally classified as 'pool boiling' and 'flow boiling'. 

In pool boiling, there is no bulk fluid flow, and any motion of the fluid is due to natural 

convection and the movement of bubbles under buoyancy effects. Heating of a liquid by 

immersing a heating element in it is an example of pool boiling.  

When boiling occurs while fluid is in motion under the influence of a pump, it is called 

flow boiling.  

These two modes of boiling are further classified as 'sub-cooled boiling' and 'saturated boiling', 

in sub-cooled boiling, main body of the liquid is at a temperature below the saturation 

temperature Tsat while in saturated boiling, main body of the liquid is at a temperature equal to 

Tsat. During initial stages of boiling, we have the sub-cooled boiling where bubbles originate at 

the heating surface, move up due to buoyancy effects, and 

dissolve in the cooler liquid since the body of the liquid is at a temperature lower than Tsat. As 

the body of the liquid reaches the saturation temperature, bubbles start reaching up to the free 

surface of the liquid and we say that bulk or saturated boiling is set in motion. 

Since boiling is a form of convection heat transfer, boiling heat flux is given by Newton's law 

of cooling 

            (       )               

Where     (       )   excess 

temperature. 
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8.3.1 Boiling Regimes and Boiling Curve 

Nukiyama performed his experiments on boiling heat transfer in 1934. He used nichrome and 

platinum wires which were electrically heated while immersed in liquids. In general, four 

different boiling regimes are observed depending upon the excess temperature (   ), namely 

I. natural convection boiling (    upto about 5 deg.C) 

II. nucleate boiling (    from 5 deg to about 30 deg.C) 

III. transition boiling (     from 30 deg to about 120 deg.C) 

IV. film boiling (    beyond 120 deg.C). 

 

Fig. (1) shows a typical boiling curve for water at one atmosphere pressure. General shape of 

the boiling curve is same for other fluids as well. In Fig. (1), boiling heat flux is plotted against 

the excess temperature. Also, shape of the boiling curve is independent of the geometry of the 

heating surface, but depends on the fluid pressure and the specific fluid-heating surface 

combination. 

 

(I) Natural convection boiling 

   This range is up to the point A' in Fig. 1. No bubbles are 

formed up to a small excess temperature of about 5 deg. and the 

liquid is superheated, rises to the free surface and evaporates from 

the surface. In this range, the free convection correlations used in 

the previous chapter can be applied to make heat transfer 

calculations. 
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(II) Nucleate boiling 

     Region between 'A' and 'C is the nucleate boiling region. 

Starting from point 'A', as     increases, bubbles start forming 

at nucleation sites at an increasing rate. Nucleate boiling region 

may classified into two sub-regions: 

a) region A-B, where the isolated bubbles formed rise up, 

but do not reach the free surface and collapse in the body 

of the liquid. Movement of the bubbles through the body 

of the liquid causes agitation which is responsible for 

increasing heat transfer in nucleate boiling. 

b) region B-C, where the bubbles form at a faster rate at a 

largely increased number of nucleation sites and rise up in the liquid in almost 

continuous columns of vapour. These bubbles gush up in the liquid and reach the free 

surface and then collapse. Heat flux in this region is very large due to this reason. Note 

at point C there is an inflection in the boiling curve; this is because of the fact that as 

excess temperature is increased, the heating surface gets almost covered with bubbles 

and the heat flux increases at a lower rate as    , increases, and reaches a maximum at 

point C. Heat flux at point C is called 'critical' or 'maximum' or 'burnout' heat flux, qmax. 

For water, qmax > 1 MW/m
2
. 

It should be clear that from heat transfer point of view, nucleate boiling regime is the most 

desirable range to operate, since very high heat transfer rates are obtained with relatively small 

   .(under 30°C). 

 

(III) Transition boiling  

     Region between 'C and 'D' is the transition boiling region. 

In this range, as the excess temperature increases, the heat flux 

decreases; this is due to the fact that now a major portion of the 

heater surface is covered by the vapour film which has a smaller 

thermal conductivity as compared to that of the liquid, and, 

therefore, acts as an insulation. At point D, excess temperature is 

of the order of 120°C. 
 

(IV) Film boiling  

     Region beyond the point D. As excess temperature is 

further increased, now a stable, vapour completely covers the 

heater surface. So, at point D, the heat flux reaches a minimum. 

Now, as the excess temperature is increased further, heat transfer 

by radiation effect also comes into picture in addition to 

conduction through the vapour film, and the heat flux increases as 

shown. 

 

 

 

 

8.3.2 Burnout Phenomenon 

In Fig. 1, a continuous boiling curve was shown. However, in practice, when Nukiyama 

conducted his experiments with an electrically heated nichrome wire immersed in a pool of 

water, he observed that when a little excess power was supplied to the nichrome wire after 

reaching point C, wire temperature suddenly increased uncontrollably to the melting point of 

the wire (i.e.l500 K) and burnout occurred. When the experiment was repeated with platinum 
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wire (which has a higher melting point of 2045 K), it was possible to maintain heat flux higher 

than qmax without a burnout Now. 

 

Note that the arm C-D of the boiling curve cannot be obtained in the power controlled mode of 

heating, unless the power applied is reduced suddenly when point C is reached.  

 

As we go on supplying electrical energy to the heater, point C (Fig. 1), i.e. the point of critical 

or maximum heat flux is reached; now, if we try to go past this point by increasing the heater 

power, the fluid is not able to accept this increased. and as a result, the heater temperature 

increases. that the heater may melt or 'burnout'. Hence, the name 

burnout heat flux' for the heat flux at point C. 

Knowledge of 'burnout flux' is very important from practical point of view (in electrically 

heated surfaces), since any attempt to go past the point C causing a burnout. So, the aim should 

be to operate at a point as near to the point C as possible. 

 

8.3.3 Simplified relations for boiling heat Transfer with water 

Many empirical relations have been developed to estimate the boiling heat-transfer coefficients 

for water. Some of the simplest relations are those presented by Jakob and Hawkins for water 

boiling on the outside of submerged surfaces at atmospheric pressure 

(Table 1).  

Table 1 

These heat-transfer coefficients may be modified to take into account the influence of pressure 

by using the empirical relation 

      (
 

  
)
   

 

where 

hp = heat-transfer coefficient at some pressure p 

h1 = heat-transfer coefficient at atmospheric pressure as determined from Table 1 

p = system pressure 

p1 = standard atmospheric pressure 

 

For forced-convection boiling inside tubes the following relation is recommended 

 

        (   )          ⁄           
where     is the temperature difference between the surface and saturated liquid in degrees 

Celsius and p is the pressure in MPa. The heat-transfer coefficient has the units of watts per 

square meter per degree Celsius. The equation is valid over a pressure range of 5 to 170 atm. 
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HEAT EXCHANGER 
 

9.1 Introduction 

'Heat exchanger' is one of the most commonly used process equipment in industry and 

research. Function of a heat exchanger is to transfer energy; this transfer of energy may occur 

to a single fluid (as the case of a boilers where heat is transferred to water) or between two 

fluids that are at different temperatures (as in the case of an automobile radiator where heat is 

transferred from hot water to air). In some cases, there are more than two streams of fluid 

exchanging heat in a heat exchanger. Heat exchangers of several designs in a variety of size 

varying from 'miniature' to 'huge'  

 

9.1.2 Some typical examples of heat exchanger applications are: 

(i) Thermal power plants (boilers, superheaters, steam condensers, etc.) 

(ii) Chemical process industry (variety of heat exchangers between different types of fluids, in 

reactors) 

(iii) Refrigeration and air-conditioning (evaporators, condensers, coolers) 

(iv) Automobile industry (radiators, all engine cooling and fuel cooling arrangements) 

(v) Cryogenic industry  

(vi) Research 

  

9.1.3 Types of Heat Exchangers 

Heat exchangers may be classified in several ways: 

(i) According to heat exchange process 

(ii) According to relative direction of flow of hot and cold fluids 

(iii) According to constructional features, compactness, etc. 

(iv) According to the state of the fluid in the heat exchanger. 

 

(i) Classification according to heat exchange process: 

Heat exchangers may be of 'direct contact type' or 'indirect contact type'. In direct contact 

type, the two fluids come in direct contact with each other and exchange heat, e.g. air and water 

exchanging heat in a cooling tower. 

Indirect contact type can be further classified as 'recuperators' and 'regenerators'. 

Recuperators are most commonly used; here, the hot and cold fluids separated from each other 

by a solid wall and heat is transferred from one fluid to the other across this wall. Regenerators, 

also called periodic flow heat exchangers', hot and cold streams alternately flow through a solid 

matrix during the 'hot blow', the matrix stores the heat given up by the hot stream and during 

'cold blow', the stored heat' is given up by the solid matrix to the cold stream. 

(ii) Classification according to relative direction of hot and cold fluids: 

If the hot and cold fluids flow parallel to each other, it is known as 'parallel flow' heat 

exchanger; if the two fluids flow opposite to each other, it is of counter-flow' type. If the fluids 

flow perpendicular to each other, then, we have 'cross flow' type of heat exchanger. These 

three types of heat exchangers are shown schematically in Fig. 1. 

(iii) Classification according to constructional features: 

 Basically, there are three types: (a) concentric tubes type (b) shell and tube type, and (c) 

compact heat exchangers. 
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In concentric tubes type of heat exchanger, one tube is located inside another; one fluid flows 

through the inside tube and the other fluid flows in the annular space between the tubes.  

Shell and tube type of heat exchanger (see fig 2) is very popular in industry because of its 

reliability and high heat transfer effectiveness. Here, one of the fluids flows within a bundle of 

tubes placed within a shell. And, the other fluid flows through the shell over the surfaces of the 

tubes. 

Compact heat exchangers are special purpose heat exchangers which provide very high surface 

area per cubic metre of volume, known as 'area density'. These are generally used for gases, 

since usually gas side heat transfer coefficient is small and therefore, it is needed to provide 

larger areas. 

(iv) Classification according to state of the fluid 

In all the types of heat exchangers discussed above, both the fluids changed their temperature 

along the length of heat exchanger. But, this need not be the case always. A 

heat exchanger may be used to condense a fluid in which case the condensing fluid will be at a 

constant temperature throughout the length of the heat exchanger, while the other (cold) fluid 

will increase in temperature as it passes through the heat exchanger, absorbing the latent heat of 

condensation released by the condensing fluid. Such a heat exchanger is called a 'Condenser'. 

If, on the other hand, one of the fluids evaporates in a heat exchanger, such a heat exchanger is 

called an Evaporator. 
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9.2 THE OVERALL HEAT TRANSFER COEFFICIENT 

A heat exchanger typically involves two flowing fluids separated 

by a solid wall. Heat is first transferred from the hot fluid to the 

wall by convection, through the wall by conduction, and from the 

wall to the cold fluid again by convection. The thermal resistance 

network associated with this heat transfer process involves two 

convection and one conduction resistances, as shown in Figure 3.  

                   
 

    
 

   (    ⁄ )

    
 

 

    
 

  
  

 
      

Where U is the overall heat transfer coefficient, whose unit is 

W/m
2
°C. Which is identical to the unit of the convection 

coefficient h. canceling    the Eq. reduces to 
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When the wall thickness of the tube is small and the thermal 

conductivity of the tube material is high, as is usually the case, 

the thermal resistance of the tube is negligible (Rwall =0) and the 

inner and outer surfaces of the tube are almost identical (Ai = Ao 

= As). Then the Eq. of the overall heat transfer coefficient simplifies to 
 

  
 

 

   
 

 

  
 

 

The overall heat transfer coefficient U in this Eq. is dominated by the smaller convection 

coefficient, since the inverse of a large number is small. When one of the convection 

coefficients is much smaller than the other (say, hi << ho), we have 1/hi >> 1/ho, and thus U 

  hi. Therefore, the smaller heat transfer coefficient creates a bottleneck on the path of heat 

flow. This situation arises frequently when one of the fluids is a gas and the other is a liquid. 

In such cases, fins are commonly used on the gas side to enhance the product UAs and thus 

the heat transfer on that side. 

When the tube is finned on one side to enhance heat transfer, the total heat transfer surface 

area on the finned side becomes 
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Where      is the fin efficiency. This way, the temperature drop along the fins is accounted.  

  
 

    
 

 

    
 

 

   
 

 

    
 

 

  (           
           ) 

 

This Eq. is an example for outer finned tube, neglected thermal resistance of the tube.  

 

9.3 Fouling factors  
Note that: above analysis was for clean heat 

transfer surfaces. However, with passage of 

time, the surfaces become 'dirty' because of 

scaling, deposits, corrosion, etc. This results in 

a reduction in heat transfer coefficient since the 

scale offers a thermal resistance to heat 

transfer. Fouling may be categorized as 

follows: 

 

(i) Due to scaling or precipitation. 

(ii) Due to deposits of divided particulates. 

(iii) Due to chemical reaction. 

(iv) Due to corrosion. 

(v) Due to attachments of algae or other biological materials. 

(vi) Due to crystallization on the surface by subcooling. 
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Effect of fouling is accounted for by a term called, 'Fouling factor',  

   
 

      
 

 

      
 

   is zero for a new heat exchanger.  

While taking into account the effect of fouling, the 'fouling resistance' (=  /area) should be 

added to the other thermal resistances. For example, for a tube, we can write: 
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where,     and     are the fouling factors for the inside and outside surfaces, respectively,  

Note: the effect of fouling has to be included in the design stage of heat exchanger. 

 

Fouling factor depends on flow velocity and operating temperature; fouling increases with 

decreasing velocity and increasing temperature. Based on experience Tubular Exchanger 

Manufacturers' Association (TEMA) has given suggested values of fouling factors. Some of 

these values are given in Table 2 
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9.4 The LMTD Method for Heat Exchanger Analysis 

1- Parallel Flow Heat Exchanger 

Consider a double pipe, parallel flow heat exchanger, in which a hot fluid and a cold fluid flow 

parallel to each other, separated by a solid wall. Hot fluid enters at a temperature of Th1 and 

leaves the heat exchanger at a temperature of Th2; cold fluid enters the heat exchanger at a 

temperature of Tc1, and leaves at a temperature of Tc2. This situation is shown in Fig. 4 

. 

We desire to get an expression for the rate of heat transfer in this heat exchanger in the 

following form: 

          
Where,     

U = overall heat transfer coefficient  

A = area for heat transfer (should be the same area on which U is based)  

    = a mean temperature difference between the fluids. 

Now, we make the following assumptions: 

(i) U is considered as a constant throughout the length (or area) of the heat exchanger 

(ii) Properties of fluids (such as specific heat) are also considered to be constant with 

temperature 

(iii) Heat exchange takes place only between the two fluids and there is no loss of heat to the 

surroundings, i.e. perfect insulation of heat exchanger is assumed 

(iv) Changes in potential and kinetic energy are negligible 

Area 'A' is constant for a given heat exchanger. However, we see from Fig. 4 that the 

temperatures of the two fluids vary along the length (or area) of the heat exchanger, i.e. the 

temperature difference between the hot and cold fluids is not a constant along the length of the 

heat exchanger, but varies along the length.  

Consider an elemental area dA of the heat exchanger. Then, by applying the First law, we can 

write: 

Heat given up by the hot fluid = heat received by the cold fluid. 

i.e. 

                                                  

Here, the temperature of hot fluid decreases as the length increases. So, a negative sign is put in 

front of             
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Now, dQ for the elemental area dA, can also be expressed as: 

     (     )                      
Now, from Eq. 1, we have: 

    
   

      
 

    
   

      
 

So  

         (     )     *
 

      
 

  

      
+            

Substituting for dQ from Eq. 2, we get: 

 (     )     (     )   *
 

      
 

  

      
+          

 (     )

(     )
   *

 

      
 

  

      
+             

Integrating Eq. 4 between the inlet and exit of the heat exchanger (i.e. between conditions 1 and 

2): 

  [
       

       
]      *

 

      
 

  

      
+           

Now, considering the total heat transfer rate for the entire heat exchanger, we have: 

       
 

       
 

       
 

       
 

Sub in Eq. 5 

  [
       

       
]  

    

 
(               ) 

      
(       )  (       )

  0
       

       
1

                

Now consider this Eq.           we observe that: 

    
(       )  (       )

  0
       

       
1

 

Since this mean temperature difference varies in a logarithmic manner, it is called 'Logarithmic 

Mean Temperature Difference' or, simply LMTD. 

So, we write: 
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(       )  (       )

  0
       

       
1

             

Now, note that (       ) is the temperature difference at the exit and (       ) is the 

temperature difference at the inlet of the heat exchanger see fig. (4). If we denote the 

temperature differences at the inlet and exit of the heat exchanger by     and    , 

respectively, we can write: 

     
(       )

  0
   

   
1

 
(       )

  0
   

    
1

               

 

2- Counter flow heat exchanger 

For Counter flow the same of Eq. 8 will be used  

But here: 

            

            

See fig 5. 

So  

     
(       )  (       )

  0
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Comments: 

1-  LMTD for a counter flow heat exchanger is always greater than that for a parallel flow 

heat exchanger. This means that to transfer the same amount of heat, counter flow unit 

will require a smaller heat transfer surface as compared to a parallel flow unit. This is 

the reason why a counter-flow heat exchanger is usually preferred. 

2-  LMTD can easily be calculated when all the end temperatures of the fluids are known. 

Then, immediately, the heat transfer rate is determined from the Eq. 

        (    ). 

3- The term       is generally replaced by C in heat exchanger analysis, i.e. C =       

Here, C is known as 'heat capacity rate' or, simply 'capacity rate' of that particular fluid. 

Thus, the capacity rates for hot and cold fluids are: 

                      

                      

            Then, the heat transfer rate is given by: 

     (       )            

     (       )            
i.e. to transfer a given amount of heat, higher the 

heat capacity rate of a fluid, lower will be the 

temperature rise (or fall) of that particular fluid. 

If the heat capacity rates of both the hot and cold 

fluids are equal, then, the total temperature drop 

of the hot fluid will be equal to the total 

temperature rise of the cold fluid. See Fig. 6 

 

4- When a fluid is condensing or boiling, its 

temperature is essentially constant, i.e.         for a condensing fluid and     
    for a boiling liquid. In other words,    for the condensing or boiling fluid is zero. 

But since a finite amount of heat is transferred, (= m.hfg) we say that capacity rate of a 

condensing or boiling fluid tends to infinity. Temperature profiles for fluids in a heat 

exchanger when one of the fluids is condensing or boiling are shown in Fig. 7 (b) and 

(c), respectively. LMTD for both these cases is determined by the same 

procedure as for the parallel or counter-flow heat exchangers 
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9.4.2 Correction Factors for Multi-pass and Cross-flow Heat Exchangers 

LMTD relations derived above are applicable to parallel flow and counter flow heat 

exchangers only. But, in practice, cross-flow heat exchangers (e.g. automobile radiators) and 

shell-and-tube heat exchangers, with more than one pass in tube side, are also used. In such 

cases, first, LMTD is calculated as if for a counter-flow heat exchanger with the inlet and exit 

temperatures for the two fluids as per the actual data, and next, a 'correction factor (F)' is 

applied to the calculated LMTD to get the mean temperature difference between the fluids. 

Now, heat transfer rate is calculated as: 

        (      )   
A value of correction factor (F) for a selected heat exchanger (as an example) is given in 

graphical representation in Fig.8. Correction factor F is plotted as function of two parameters, 

i.e. P and R, defined as: 

 

 

Note: for a condenser or boiler, F = 1, irrespective of the configuration of the heat exchanger. 

 

 

9.5 The Effectiveness NTU Method for Heat Exchanger Analysis 

LMTD can readily be determined when all the four end temperatures are either given, or can 

easily be calculated. Then, the area required, A (i.e. the size of the HX) is easily found out by 

applying the equation:         (    )  In other words, LMTD method is very convenient 

to use for sizing problems. However, there are certain problems where only the inlet 

temperatures of both the fluids are specified, along with the flow rates and the overall heat 

transfer coefficients, and the heat transfer rate and the exit temperatures of the fluids are to be 

calculated. The Effectiveness-NTU method, developed by Kays and London in 1955, 

overcomes this problem and makes the solution straight forward. Effectiveness-NTU method is 

also useful in solving heat exchanger problems, where off-design conditions exist; i.e. for 

example, the heat exchanger might have been designed for some particular flow rates of fluids; 

now, to find out what happens to the performance if flow rate of one of the fluids is reduced to, 

say, 75 % of the design flow rate, and so on. 
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Before we develop the Effectiveness-NTU relations for different types of heat exchangers, let 

us define a few quantities: 

 Effectiveness of a heat exchanger ( ): 

  
 

    
 

Where, 

Q = actual heat transferred in the heat exchanger. 

Qmax = maximum possible heat transfer in the heat exchanger. 

Now, actual heat transfer rate in a heat exchanger is given by: 

         (       )     (       ) 

         (       )     (       ) 

Now,    may be equal to    or less than    or greater than    

If    <    we designate    as Cmin; 

Instead, if    >    we designate    as Cmin. 

And in each case, capacity rate of the other fluid is designated as Cmax 

Capacity ratio is defined as: 

  
    

    
 

 Maximum possible heat transfer in a heat exchanger (Qmax): 

Now, consider a heat exchanger where the hot fluid is cooled from a temperature of    to     

and the cold fluid heated from     to   . So, the maximum temperature differential in the heat 

exchanger is (    -   ). Now, if the heat exchanger had an infinite area, the hot fluid will be 

cooled from    to     or the cold fluid may be heated from     to     However, which fluid 

will experience the maximum temperature differential (    -   ) will depend upon which fluid 

has the minimum capacity rate. 

If hot fluid has the minimum capacity rate, we can write: 

        (       ) 
Instead, if cold fluid has the minimum capacity rate, we write: 

        (       ) 
Or, more generally, we write: 

          (       ) 
These situations are represented graphically in Fig. 9: 

 

 

 

Therefore, we can write for effectiveness: 
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   (       )

     (       )
 

   (       )

     (       )
                   

 

Now, if hot fluid is the 'minimum fluid' (i.e. Ch < Cc), the effectiveness: 

  
(       )

(       )
 

And, if cold fluid is the 'minimum fluid' (i.e. Cc < Ch), the effectiveness: 

  
(       )

(       )
 

 

 Number of Transfer Units (NTU) (which is a dimensionless number), is defined as: 

    
   

    
 

 

Now, for any heat exchanger, effectiveness can be expressed as a function of the NTU and 

capacity ratio 

   (    
    

    
) 

9.5.2 Effectiveness-NTU Relation for a Parallel-flow Heat Exchanger 

Consider the parallel-flow heat exchanger shown in Fig. 4. Assumptions for this derivation 

remain the same as for the LMTD method. 

Continuing from Eq. 5: 

  [
       

       
]      *

 

      
 

  

      
+           

Now, one of the two fluids is the 'minimum' fluid and the other is the 'maximum' fluid. 

Whichever may be the minimum fluid, we can write Eq. 5 as: 
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]  
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    [     [  

    

    
]] 

Now, substituting for            from Eq. 9, we get: 

0      
    

  
 (       )1  0      

    

  
 (       )1
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(       )         (       ) 0
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Now, assuming    >    i.e. cold fluid as the 'minimum fluid', we have:      =    and      

=    

Therefore, 

    [  
    

    
]     [     [  

    

    
]] 

  

     *     0  
    

    
1+

  
    

    

                             

  
     [     ,   -]

   
                             

Where    
    

    
 

Special cases: 

(i) For a condenser or boiler i.e. one of the fluids undergoes a phase change. Therefore, 

       i.e. Capacity ratio, C = 0. Then effectiveness relation (for all heat exchangers) 

reduces to: 

       ,    -                    

(ii) When C = 1, i.e.      =     . This is the case of a typical, gas turbine regenerator. In this 

case, 

  
     ,      -

 
                        

 

9.5.2 Effectiveness-NTU Relation for a Counter-flow Heat Exchanger 

Again, consider the counter-flow heat exchanger shown in Fig. 5. The Effectiveness-NTU 

Relation for this HX will be 
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9.6 SELECTION OF HEAT EXCHANGERS 

Heat exchangers are complicated devices, and the results obtained with the simplified 

approaches presented above should be used with care. For example, we assumed that the 

overall heat transfer coefficient U is constant throughout the heat exchanger and that the 

convection heat transfer coefficients can be predicted using the convection correlations. 

However, it should be kept in mind that the uncertainty in the predicted value of U can even 

exceed 30 percent. 

Thus, it is natural to tend to overdesign the heat exchangers in order to avoid unpleasant 

surprises. 

Engineers in industry often find themselves in a position to select heat exchangers to 

accomplish certain heat transfer tasks. Usually, the goal is to heat or cool a certain fluid at a 

known mass flow rate and temperature to a desired temperature. Thus, the rate of heat 

transfer in the heat exchanger is 

      (          ) 
This gives the heat transfer requirement of the heat exchanger before having any idea about 

the heat exchanger itself. 
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An engineer going through catalogs of heat exchanger manufacturers will be surprised by the 

type and number of readily available heat exchangers. The proper selection depends on 

several factors. 

 

1. Heat Transfer Rate 

This is the most important quantity in the selection of a heat exchanger. A heat 

exchanger should be capable of transferring heat at the specified rate in order to 

achieve the desired temperature change of the fluid at the specified mass flow rate. 

2. Cost 

Budgetary limitations usually play an important role in the selection of heat 

exchangers; an off-the-shelf heat exchanger has a cost advantage over those made to 

order. The operation and maintenance costs of the heat exchanger are also important 

considerations in assessing the overall cost. 

3. Pumping Power 

In a heat exchanger, both fluids are usually forced to flow by pumps or fans that 

consume electrical power. The annual cost of electricity associated with the operation 

of the pumps and fans can be determined from 

               (                )  (                    ) 
 (                          ) 

Where the pumping power is the total electrical power consumed by the motors of the 

pumps and fans. For example, a heat exchanger that involves a 1-hp pump and a
 

 
 -hp 

fan (1 hp = 0.746 kW) operating 8 h a day and 5 days a week will consume 2017 kWh 

of electricity per year, which will cost $165.4 at an electricity cost of 8 cents/kWh. 

4. Size and Weight 

Normally, the smaller and the lighter the heat exchanger, the better it is. This is 

especially the case in the automotive and aerospace industries. The space available 

for the heat exchanger in some cases limits the length of the tubes (heat exchanger) 

that can be used. 

5. Type 

The type of heat exchanger to be selected depends primarily on the type of fluids 

involved; for example, a heat exchanger is suitable to cool a liquid by a gas if the 

surface area on the gas side is many times that on the liquid side. On the other hand, a 

plate or shell-and-tube heat exchanger is very suitable for cooling a liquid by another 

liquid. 

6. Materials 

The materials used in the construction of the heat exchanger may be an important 

consideration in the selection of heat exchangers. For example, a temperature 

difference of 50°C or more between the tubes and the shell will pose differential 

thermal expansion problems and needs to be considered.  

 

 


